PN91 - PN92 - PN93 # LMV5.. Microprocessor-controlled heavy oil burners MANUAL OF INSTALLATION - USE - MAINTENANCE BURNERS - BRUCIATORI - BRULERS - BRENNER - QUEMADORES - ГОРЕЛКИ #### **WARNINGS** THIS MANUAL IS SUPPLIED AS AN INTEGRAL AND ESSENTIAL PART OF THE PRODUCT AND MUST BE DELIVERED TO THE USER. INFORMATION INCLUDED IN THIS SECTION ARE DEDICATED BOTH TO THE USER AND TO PERSONNEL FOLLOWING PRODUCT INSTALLATION AND MAINTENANCE. THE USER WILL FIND FURTHER INFORMATION ABOUT OPERATING AND USE RESTRICTIONS, IN THE SECOND SECTION OF THIS MANUAL. WE HIGHLY RECOMMEND TO READ IT. CAREFULLY KEEP THIS MANUAL FOR FUTURE REFERENCE. #### 1) GENERAL INTRODUCTION - The equipment must be installed in compliance with the regulations in force, following the manufacturer's instructions, by qualified personnel - Qualified personnel means those having technical knowledge in the field of components for civil or industrial heating systems, sanitary hot water generation and particularly service centres authorised by the manufacturer. - Improper installation may cause injury to people and animals, or damage to property, for which the manufacturer cannot be held liable. - Remove all packaging material and inspect the equipment for integrity In case of any doubt, do not use the unit - contact the supplier. The packaging materials (wooden crate, nails, fastening devices, plastic bags, foamed polystyrene, etc), should not be left within the reach of children, as they may prove harmful. - Before any cleaning or servicing operation, disconnect the unit from the mains by turning the master switch OFF, and/or through the cutout devices that are provided. - Make sure that inlet or exhaust grilles are unobstructed. - In case of breakdown and/or defective unit operation, disconnect the unit. Make no attempt to repair the unit or take any direct action. Contact qualified personnel only. Units shall be repaired exclusively by a servicing centre, duly authorised by the manufacturer, with original spare parts. Failure to comply with the above instructions is likely to impair the unit's safety. To ensure equipment efficiency and proper operation, it is essential that maintenance operations are performed by qualified personnel at regular intervals, following the manufacturer's instructions. - When a decision is made to discontinue the use of the equipment, those parts likely to constitute sources of danger shall be made harmless. - In case the equipment is to be sold or transferred to another user, or in case the original user should move and leave the unit behind, make sure that these instructions accompany the equipment at all times so that they can be consulted by the new owner and/or the installer. - For all the units that have been modified or have options fitted then original accessory equipment only shall be used. - This unit shall be employed exclusively for the use for which it is meant. Any other use shall be considered as improper and, therefore, dangerous. The manufacturer shall not be held liable, by agreement or otherwise, for damages resulting from improper installation, use and failure to comply with the instructions supplied by the manufacturer. #### 2) SPECIAL INSTRUCTIONS FOR BURNERS - The burner should be installed in a suitable room, with ventilation openings complying with the requirements of the regulations in force, and sufficient for good combustion. - Only burners designed according to the regulations in force should be used. - This burner should be employed exclusively for the use for which it was designed. - Before connecting the burner, make sure that the unit rating is the same as delivery mains (electricity, gas oil, or other fuel). - Observe caution with hot burner components. These are, usually, near to the flame and the fuel pre-heating system, they become hot during the unit operation and will remain hot for some time after the burner has stopped. When the decision is made to discontinue the use of the burner, the user shall have qualified personnel carry out the following operations: - a Remove the power supply by disconnecting the power cord from the mains. - b) Disconnect the fuel supply by means of the hand-operated shut-off valve and remove the control handwheels from their spindles. #### **Special warnings** - Make sure that the burner has, on installation, been firmly secured to the appliance, so that the flame is generated inside the appliance firebox. - Before the burner is started and, thereafter, at least once a year, have qualified personnel perform the following operations: - a set the burner fuel flow rate depending on the heat input of the appliance: - b set the flow rate of the combustion-supporting air to obtain a combustion efficiency level at least equal to the lower level required by the regulations in force; - c check the unit operation for proper combustion, to avoid any harmful or polluting unburnt gases in excess of the limits permitted by the regulations in force; - d make sure that control and safety devices are operating properly; - make sure that exhaust ducts intended to discharge the products of combustion are operating properly; - f on completion of setting and adjustment operations, make sure that all mechanical locking devices of controls have been duly tightened; - g make sure that a copy of the burner use and maintenance instructions is available in the boiler room. - In case of a burner shut-down, reser the control box by means of the RESET pushbutton. If a second shut-down takes place, call the Technical Service, without trying to RESET further. - The unit shall be operated and serviced by qualified personnel only, in compliance with the regulations in force. # 3) GENERAL INSTRUCTIONS DEPENDING ON FUEL USED # 3a) ELECTRICAL CONNECTION - For safety reasons the unit must be efficiently earthed and installed as required by current safety regulations. - It is vital that all saftey requirements are met. In case of any doubt, ask for an accurate inspection of electrics by qualified personnel, since the manufacturer cannot be held liable for damages that may be caused by failure to correctly earth the equipment. - Qualified personnel must inspect the system to make sure that it is adequate to take the maximum power used by the equipment shown on the equipment rating plate. In particular, make sure that the system cable cross section is adequate for the power absorbed by the unit - No adaptors, multiple outlet sockets and/or extension cables are permitted to connect the unit to the electric mains. - An omnipolar switch shall be provided for connection to mains, as required by the current safety regulations. - The use of any power-operated component implies observance of a few basic rules, for example: - do not touch the unit with wet or damp parts of the body and/or with bare feet; - do not pull electric cables; - do not leave the equipment exposed to weather (rain, sun, etc.) unless expressly required to do so; - do not allow children or inexperienced persons to use equipment; - The unit input cable shall not be replaced by the user. In case of damage to the cable, switch off the unit and contact qualified personnel to replace. When the unit is out of use for some time the electric switch supplying all the power-driven components in the system (i.e. pumps, burner, etc.) should be switched off. # 3b) FIRING WITH GAS, LIGHT OIL OR OTHER FUELS GENERAL - The burner shall be installed by qualified personnel and in compliance with regulations and provisions in force; wrong installation can cause injuries to people and animals, or damage to property, for which the manufacturer cannot be held liable. - Before installation, it is recommended that all the fuel supply system pipes be carefully cleaned inside, to remove foreign matter that might impair the burner operation. - Before the burner is commissioned, qualified personnel should inspect the following: - a the fuel supply system, for proper sealing; - b the fuel flow rate, to make sure that it has been set based on the firing rate required of the burner; - c the burner firing system, to make sure that it is supplied for the designed fuel type; - d the fuel supply pressure, to make sure that it is included in the range shown on the rating plate; - e the fuel supply system, to make sure that the system dimensions are adequate to the burner firing rate, and that the system is equipped with all the safety and control devices required by the regulations in force. - When the burner is to remain idle for some time, the fuel supply tap or taps should be closed. #### SPECIAL INSTRUCTIONS FOR USING GAS Have qualified personnel inspect the installation to ensure that: - a the gas delivery line and train are in compliance with the regulations and provisions in force; - b all gas connections are tight; - c the boiler room ventilation openings are such that they ensure the air supply flow required by the current regulations, and in any case are sufficient for proper combustion. - Do not use gas pipes to earth electrical equipment. - Never leave the burner connected when not in use. Always shut the gas valve off. - In case of prolonged absence of the user, the main gas delivery valve to the burner should be shut off. ## Precautions if you can smell gas - do not operate electric switches, the telephone, or any other item likely to generate sparks; - b immediately open doors and windows to create an air flow to purge the room; - c close the gas valves; - d contact qualified personnel. - Do not obstruct the ventilation openings of the room where gas appliances are installed, to avoid dangerous conditions such as the development of toxic or explosive mixtures. #### **DIRECTIVES AND STANDARDS** #### Gas burners #### **European directives:** - Directive 2009/142/EC Gas Appliances; - Directive 2006/95/EC on low voltage; - Directive 2004/108/EC on electromagnetic compatibility #### Harmonised standards: -UNI EN 676 (Gas Burners;-EN 55014-1Electromagnetic
compatibility - Requirements for household appliances, electric tools and similar apparatus. -CEI EN 60335-1(Household and similar electrical appliances - Safety. Part 1: General requirements; -EN 50165 (Electrical equipment of non-electric appliances for household and similar purposes. Safety requirements. -EN 60335-2-102 (Household and similar electrical appliances. Safety. Particular requirements for gas, oil and solid-fuel burning appliances having electrical connections) #### Light oil burners #### **European directives:** - Directive 2006/95/EC on low voltage; - Directive 2004/108/EC on electromagnetic compatibility #### Harmonised standards: - -CEI EN 60335-1(Household and similar electrical appliances Safety. Part 1: General requirements; - -UNI 267 Automatic forced draught burners for liquid fuels - -EN 55014-1Electromagnetic compatibility Requirements for household appliances, electric tools and similar apparatus. - -EN 50165 (Electrical equipment of non-electric appliances for household and similar purposes. Safety requirements. #### National standards: -UNI 7824: Monobloc nebulizer burners for liquid fuels. Characteristics and test methods #### Heavy oil burners ### **European directives:** - Directive 2006/95/EC on low voltage; - Directive 2004/108/EC on electromagnetic compatibility # $\label{thm:harmonised} \textbf{Harmonised standards:}$ - -CEI EN 60335-1 Household and similar electrical appliances SafetyPart 1: General requirements; - -EN 55014-1Electromagnetic compatibility Requirements for household appliances, electric tools and similar apparatus. - EN 50165 Electrical equipment of non-electric appliances for household and similar purposes. Safety requirements. ## National standards: -UNI 7824: Monobloc nebulizer burners for liquid fuels. Characteristics and test methods # Gas - Light oil burners #### **European directives:** - Directive 2009/142/EC Gas Appliances; - Directive 2006/95/EC on low voltage; - Directive 2004/108/EC on electromagnetic compatibility #### Harmonised standards: - -UNI EN 676 Gas Burners - -EN 55014-1Electromagnetic compatibility Requirements for household appliances, electric tools and similar apparatus. - -UNI 267 Automatic forced draught burners for liquid fuels - -CEI EN 60335-1(Household and similar electrical appliances Safety. Part 1: General requirements; - EN 50165 Electrical equipment of non-electric appliances for household and similar purposes. Safety requirements. # National standards: -UNI 7824: Monobloc nebulizer burners for liquid fuels. Characteristics and test methods ## Gas - Heavy oil burners #### **European directives:** - Directive 2009/142/EC Gas Appliances; - Directive 2006/95/EC on low voltage; - Directive 2004/108/EC on electromagnetic compatibility # Harmonised standards: - -EN 55014-1Electromagnetic compatibility Requirements for household appliances, electric tools and similar apparatus. - -UNI EN 676 (Gas Burners; - -CEI EN 60335-1(Household and similar electrical appliances Safety. Part 1: General requirements; - EN 50165 Electrical equipment of non-electric appliances for household and similar purposes. Safety requirements. #### National standards: -UNI 7824: Monobloc nebulizer burners for liquid fuels. Characteristics and test methods # Industrial burners # **European directives:** - Directive 2009/142/EC Gas Appliances; - Directive 2006/95/EC on low voltage; - Directive 2004/108/EC on electromagnetic compatibility # Harmonised standards: - -EN 55014-1Electromagnetic compatibility Requirements for household appliances, electric tools and similar apparatus. - -EN 50165 Electrical equipment of non-electric appliances for household and similar purposes. Safety requirements. - -UNI EN 746-2: Industrial thermoprocessing equipment # **PART I: INSTALLATION** # **Burner model identification** Burners are identified by burner type and model. Burner model identification is described as follows. | Type PN91 Model N PR. S. *. (1) (2) (3) (4) (5) | A. (6) | ES. (7) | | | | | |---|---------------|---|--|--|--|--| | (1) BURNER TYPE | | PN91 - PN92 - PN93 | | | | | | (2) FUEL | | N - Heavy oil, viscosity \leq 50cSt (7° E) @ 50° C
E - Heavy oil, viscosity \leq 110cSt (15°E) @ 50° C
D - Heavy oil, viscosity \leq 400cSt (50° E) @ 50° C
P - Petroleum, viscosity 89cSt (12° E) @ 50° C | | | | | | (3) OPERATION (Available versions) | | PR - Progressive MD - Fully modulating | | | | | | (4) BLAST TUBE | | S - Standard L - Extended | | | | | | (5) DESTINATION COUNTRY | | * - see data plate | | | | | | (6) BURNER VERSION | | A - Standard | | | | | | MICRO-PROCESSOR CONTROL | | ES - with no O2 trim control, with no VSD control | | | | | # **Technical Specifications** | BURNER | | PN91 | PN92 | PN93 | | | |-------------------------------------|---------------|--------------------------------|--------------------------|------------|--|--| | Output | min - max kW | 698 - 2093 | 849 - 2558 | 550 - 4100 | | | | Fuel | | | Heavy oil | 1 | | | | Oil viscosity | | See "Bu | ırner model identificati | on" table | | | | Heavy oil rate | min max. kg/h | 62 - 187 | 76- 228 | 49- 365 | | | | Power supply | | : | 230/400V 3N a.c. 50H | Z | | | | Total power consumption (Heavy oil) | kW | 22.5 | 24 | 32 | | | | Total power consumption (Petroleum) | kW | 10.5 | 12 | 16 | | | | Fan motor | kW | 4 | 5.5 | 7.5 | | | | Pre-heater resistors (heavy oil) | kW | 18 18 | | 24 | | | | Pre-heater resistors (Petroleum) | kW | 6 6 | | | | | | Protection | | IP40 | | | | | | Approx. weight | kg | 240 280 | | 290 | | | | Operation | | Progressive - Fully modulating | | | | | | Operating temperature | °C | -10 ÷ +50 | | | | | | Storage Temperature | °C | -20 ÷ +60 | | | | | | Working service* | | | Intermittent | | | | Heavy oil net calorific value (Hi): 40.4 MJ/kg (average value). Heavy oil net calorific value (Hi): 40.4 MJ/kg (average value). Burners provided with Siemens LMV5x control box: the control box automatically stops after 24h of continuous working. The control box immediately starts up, automatically. # How to interpret the burner "Performance curve" To check if the burner is suitable for the boiler to which it must be installled, the following parameters are needed: - furnace input, in kW or kcal/h (kW = kcal/h / 860); - backpressure (data are available on the boiler ID plate or in the user's manual). Example: Furnace input: 600kW Backpressure: 4mbar In the "Performance curve" diagram (Fig. 1), draw a vertical line matching the furnace input value and an horizontal line matching the backpressure value. The burner is suitable if the intersection point A is inside the performance curve. Fig. 1 kW Data are referred to standard conditions: atmospheric pressure at 1013mbar, ambient temperature at 15°C. #### Performance Curves kW To get the input in kcal/h, multiply value in kW by 860. Data are referred to standard conditions: atmospheric pressure at 1013mbar, ambient temperature at 15°C. **NOTE:** The performance curve is a diagram that represents the burner performance in the type approval phase or in the laboratory tests, but does not represent the regulation range of the machine. On this diagram the maximum output point is usually reached by adjusting the combustion head to its "MAX" position (see paragraph "Adjusting the combustion head"); the minimum output point is reached setting the combustion head to its "MIN" position. During the first ignition, the combustion head is set in order to find a compromise between the burner output and the generator specifications, that is why the minimum output may be different from the Performance curve minimum. # Overall dimensions (mm) | TIPO | A (AS) | A (AL) | AA | AB | AC | AD | ΑE | B (BS) | B (BL) | BB | С | CC | D | DD | Е | EE | F | G | Н | I | K | L | M | N | Omin | Omax | Р | Т | W | Υ | Z | |------|--------|--------|-----|-----|-----|----|-----|--------|--------|-----|------|-----|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|-----|----|-----|-----|-----| | PN91 | 1329 | 1519 | 152 | 276 | 221 | 35 | 473 | 298 | 488 | 441 | 1031 | 533 | 1129 | 464 | 533 | 441 | 596 | 262 | 292 | 228 | 360 | 466 | M12 | 424 | 280 | 310 | 300 | 44 | 765 | 240 | 185 | | PN92 | 1332 | 1522 | 152 | 276 | 221 | 35 | 473 | 301 | 491 | 441 | 1031 | 533 | 1129 | 464 | 533 | 441 | 596 | 292 | 322 | 228 | 360 | 466 | M12 | 424 | 280 | 310 | 300 | 44 | 765 | 240 | 185 | | PN93 | 1315 | 1505 | 152 | 276 | 221 | 35 | 473 | 301 | 491 | 460 | 1014 | 533 | 1129 | 464 | 533 | 441 | 596 | 292 | 322 | 228 | 360 | 466 | M12 | 424 | 280 | 310 | 300 | 44 | 765 | 248 | 185 | BS = standard blast tube BL = extended blast tube Fig. 2- (3l2D-25) Hydraulic diagram ATTENTION: connect the oil return line to the degassing bottle (standard UNI 9248), as shown in the chapter "Recommendations to design heavy oil feeding plants" | 3LMD-25 | KEYS | |---------|--| | | OIL TRAIN | | 1 | Filter | | 2 | Pump and pressure governor | | 4 | Electrical preheater tank | | Pb4 | Temperature probe | | Pb1 | Temperature probe | | Pb3 | Temperature probe | | 8 | Thermometer | | 9 | 3-way solenoid valve | | 10 | Flexible hose | | 11 | Flexible hose | | 12 | Flexible hose | | 13 | Oil distributor | | 33 | Pressure gauge with manual valve (*optional) | | 14 | Low thermostat - TCI | | 15 | Pressure governor with actuator | | 16 | Flexible hose | | 17 | Burner | | | COMBUSTION AIR TRAIN | | 18 | Air damper with actuator | | 20 | Draught fan with electromotor | 9 #### INSTALLING THE BURNER # **Packing** Burners are despatched in wooden crates whose dimensions are: **PN91-92-93** 1730mm x 1280mm x 1020mm (L
x P x H) Packing cases of this kind are affected by humidity and are not suitable for stacking. The following are placed in each packing case: - burner; - gasket to be inserted between the burner and the boiler; - oil flexible hoses; - oil filter; - envelope containing this manual. To get rid of the burner's packing, follow the procedures laid down by current laws on disposal of materials.. # Handling the burner ATTENTION! The Ihandling operations must be carried out by specialised and trained personnel. If these operations are not carried out correctly, the residual risk for the burner to overturn and fall down still persists. To move the burner, use means suitable to support its weight (see paragraph "Technical specifications"). The unpacked burner must be lifted and moved only by means of a fork lift truck. The burner is mounted on a stirrup provided for handling the burner by means of a fork lift truck: the forks must be inserted into the A anb B ways. Remove the stirrup only once the burner is installed to the boiler. # Fitting the burner to the boiler To install the burner into the boiler, proceed as follows: - 1 make a hole on the closing door of the combustion chamber as described on paragraph "Overall dimensions") - 2 place the burner to the boiler: lift it up and handle it according to the procedure described on paragraph "Handling the burner"; - 3 place the stud bolts (5) on boiler's door, according to the burner drilling template described on paragraph "Overall dimensions": - 4 fasten the stud bolts; - 5 place the gasket on the burner flange; - 6 install the burner into the boiler; - 7 fix the burner to the stud bolts, by means of the fixing nuts, according to the next picture. - 8 After fitting the burner to the boiler, ensure that the gap between the blast tube and the refractory lining is sealed with appropriate insulating material (ceramic fibre cord or refractory cement). #### **Keys** - 1 Burner - 2 Fixing nut - 3 Washer - 4 Sealing gasket - 5 Stud bolt - 7 Blast tube Set the upper side of the burner flange in a horizontal position, in order to obtain the correct inclination of the pre-heating tank **Key** - 1 Burner flange (upper side indicated) - 2 Bracket - 3 Pre-heating tank on the burner #### **ELECTRICAL CONNECTIONS** WARNING! Respect the basic safety rules. make sure of the connection to the earthing system. do not reverse the phase and neutral connections. fit a differential thermal magnet switch adequate for connection to the mains. WARNING! before executing the electrical connections, pay attention to turn the plant's switch to OFF and be sure that the burner's main switch is in 0 position (OFF) too. Read carefully the chapter "WARNINGS", and the "Electrical connections" section. ATTENTION: Connecting electrical supply wires to the burner teminal block MA, be sure that the ground wire is longer than phase and neutral ones. To execute the electrical connections, proceed as follows: - 1 remove the cover from the electrical board, unscrewing the fixing screws; - 2 execute the electrical connections to the supply terminal board as shown in the attached wiring diagrams; - 3 check the direction of the fan motor (see next paragraph); - 4 refit the panel cover. WARNING: (only for double stage and progressive burners) The burner is provided with an electrical bridge between terminals 6 and 7; when connecting the high/low flame thermostat, remove this bridge before connecting the thermostat. WARNING: It is recommended to install a shunt trip disconnect switch that acts on the preheater unit supply line and avoids the oil overheating / resistance damage in case of a malfunction of the resistance contactor. Inside the electric board a free contact is provided (terminals 507 - 508) for this purpose. #### Rotation of electric motor Once the electrical connection of the burner is executed, remember to check the rotation of the electric motor. The motor should rotate according to the "arrow" symbol on the body. In the event of wrong rotation, reverse the three-phase supply and check again the rotation of the motor. CAUTION: check the motor thermal cut-out adjustment NOTE: the burners are supplied for three-phase 380 V or 400 V supply, and in the case of three-phase 220 V or 230 V supply it is necessary to modify the electrical connections into the terminal box of the electric motor and replace the overload tripped relay. # Note on elecrtical supply RC466890660 - RC Siemens filter If the power supply to the burner is 230V three-phase or 230V phase-phase (without a neutral), with the Siemens control box, between the terminal 2 (terminal X3-04-4 in case of LMV2x, LMV3x, LMV5x, LME7x) on the board and the earth terminal, an RC Siemens RC466890660 filter must be inserted. # Key C - Capacitor (22nF/250V) LME / LMV - Siemens control box R - Resistor (1M Ω) M - Terminal 2 (LGB,LMC,LME), terminal X3-04-4 (LMV2x, LMV3x, LMV5, LME7x) For LMV5 control box, please refer to the clabeling recommendations avaible on the Siemens CD attached to the burner # Connecting the oil heating resistors # Double-pipe and single-pipe system The pumps that are used can be installed both into single-pipe and double-pipe systems. **Single-pipe system:** a single pipe drives the oil from the tank to the pump's inlet. Then, from the pump, the pressurised oil is driven to the nozzle: a part comes out from the nozzle while the othe part goes back to the pump. In this system, the by-pass pulg, if provided, must be removed and the optional return port, on the pump's body, must be sealed by steel plug and washer. **Double-pipe system:** as for the single pipe system, a pipe that connects the tank to the pump's inlet is used besides another pipe that connects the pum's return port to the tank, as well. The excess of oil goes back to the tank: this installation can be considered self-ble-eding. If provided, the inside by-pass plug must be installed to avoid air and fuel passing through the pump. Burners come out from the factory provided for double-stage systems. They can be suited for single-pipe system (recommended in the case of gravity feed) as decribed before. To change from a 1-pipe system to a 2-pipe-system, insert the by-pass plug **G** (as for ccw-rotation-referring to the pump shaft). Caution: Changing the direction of rotation, all connections on top and side are reversed. #### Bleed Bleeding in two-pipe operation is automatic: it is assured by a bleed flat on the piston. In one-pipe operation, the plug of a pressure gauge port must be loosened until the air is evacuated from the system. #### Oil pumps PN91: SUNTEC TA2 / DANFOSS KSM50 PN92/93/510: SUNTEC TA3 / DANFOSS KSM70 | Danfoss KSM | | | | | | |-----------------------|---------------------------|--|--|--|--| | Oil viscosity | 2.5 ÷ 450 cSt | | | | | | Oil temperature | -10 ÷ 160 °C | | | | | | Max. suction pressure | 4 bar | | | | | | Min. suction pressure | -0.45 bar to avoid gasing | | | | | | Max. return pressure | 4 bar | | | | | | Rotation speed | 3450 rpm max | | | | | #### Keys - 1 Pressure regulator - 2 Pressure/Vacuum gauge port to measure inlet pressure/vacuum - 3 Pressure gauge port - 5 Suction - 7 To the nozzle - 8 Return | Suntec TA | | |-----------------------|----------------------------| | Oil viscosity | 3 ÷ 75 cSt | | Oil temperature | 0 ÷ 150°C | | Min. suction pressure | - 0.45 bar to avoid gasing | | Max. suction pressure | 5 bar | | Max. return pressure | 5 bar | | Rotation speed | 3600 rpm max. | - 1 Inlet G1/2 - 2 To the nozzle G1/2 - 3 Return G1/2 - 4 Pressure gauge port G1/4 - 5 Vacuum gauge port G1/4 - 6 Pressure governor # About the use of fuel pumps - Make sure that the by-pass plug is not used in a single pipe installation, because the fuel unit will not function properly and damage to the pump and burner motor could result. - Do not use fuel with additives to avoid the possible formation over time of compounds which may deposit between the gear teeth, thus obstructing them. - After filling the tank, wait before starting the burner. This will give any suspended impurities time to deposit on the bottom of the tank, thus avoiding the possibility that they might be sucked into the pump. - On initial commissioning a "dry" operation is foreseen for a considerable length of time (for example, when there is a long suction line to bleed). To avoid damages inject some lubrication oil into the vacuum inlet. - Care must be taken when installing the pump not to force the pump shaft along its axis or laterally to avoid excessive wear on the joint, noise and overloading the gears. - Pipes should not contain air pockets. Rapid attachment joint should therefore be avoided and threaded or mechanical seal junctions preferred. Junction threads, elbow joints and couplings should be sealed with removable sg component. The number of junctions should be kept to a minimum as they are a possible source of leakage. - Do not use PTFE tape on the suction and return line pipes to avoid the possibility that particles enter circulation. These could deposit on the pump filter or the nozzle, reducing efficiency. Always use O-Rings or mechanical seal (copper or aluminium gaskets) junctions if possible. - An external filter should always be installed in the suction line upstream of the fuel unit. # Connecting the oil flexible hoses To connect the flexible light oil hoses to the pump, proceed as follows, according to the pump provided: - 1 remove the closing nuts **A** and **R** on the inlet and return connections of the pump; - screw the rotating nut of the two flexible hoses on the pump **being careful to avoid exchanging the inlet and return lines**: see the arrows marked on the pump that show the inlet and the return (see prevoius paragraph). # Connections to the oil gun - 1 Inlet - 2 Return - 3 Gun opening - 4 Heating wire (only for oil viscosity > 50Cst @ 50°C) - 5 Cartdrige-type heater (only for oil viscosity > 50Cst @ 50°C) ## **PART II: OPERATION** #
LIMITATIONS OF USE THE BURNER IS AN APPLIANCE DESIGNED AND CONSTRUCTED TO OPERATE ONLY AFTER BEING CORRECTLY CONNECTED TO A HEAT GENERATOR (E.G. BOILER, HOT AIR GENERATOR, FURNACE, ETC.), ANY OTHER USE IS TO BE CONSIDERED IMPROPER AND THEREFORE DANGEROUS. THE USER MUST GUARANTEE THE CORRECT FITTING OF THE APPLIANCE, ENTRUSTING THE INSTALLATION OF IT TO QUALIFIED PERSONNEL AND HAVING THE FIRST COMMISSIONING OF IT CARRIED OUT BY A SERVICE CENTRE AUTHORISED BY THE COMPANY MANUFACTURING THE BURNER. A FUNDAMENTAL FACTOR IN THIS RESPECT IS THE ELECTRICAL CONNECTION TO THE GENERATOR'S CONTROL AND SAFETY UNITS (CONTROL THERMOSTAT, SAFETY, ETC.) WHICH GUARANTEES CORRECT AND SAFE FUNCTIONING OF THE BURNER. THEREFORE, ANY OPERATION OF THE APPLIANCE MUST BE PREVENTED WHICH DEPARTS FROM THE INSTALLATION OPERATIONS OR WHICH HAPPENS AFTER TOTAL OR PARTIAL TAMPERING WITH THESE (E.G. DISCONNECTION, EVEN PARTIAL, OF THE ELECTRICAL LEADS, OPENING THE GENERATOR DOOR, DISMANTLING OF PART OF THE BURNER). NEVER OPEN OR DISMANTLE ANY COMPONENT OF THE MACHINE. OPERATE ONLY THE MAIN SWITCH, WHICH THROUGH ITS EASY ACCESSIBILITY AND RAPIDITY OF OPERATION ALSO FUNCTIONS AS AN EMERGENCY SWITCH, AND ON THE RESET BUTTON. IN CASE OF A BURNER SHUT-DOWN, RESET THE CONTROL BOX BY MEANS OF THE RESET PUSHBUTTON. IF A SECOND SHUT-DOWN TAKES PLACE, CALL THE TECHNICAL SERVICE, WITHOUT TRYING TO RESET FURTHER. WARNING: DURING NORMAL OPERATION THE PARTS OF THE BURNER NEAREST TO THE GENERATOR (COUPLING FLANGE) CAN BECOME VERY HOT, AVOID TOUCHING THEM SO AS NOT TO GET BURNT. # **OPERATION** ATTENTION: before starting the burner up, be sure that the manual cutoff valves are open and check that the pressure upstream the gas train complies the value quoted on paragraph "Technical specifications". # Light oil operation - The fan motor starts and the pre-purge phase as well. Since the pre-purge phase must be carried out at the maximum air rate, the control box drives the actuator opening and when the maximum opening position is reached, the pre-purge time counting starts. - At the end of the pre-purge time, the actuator is in the light oil ignition position: the ignition transformer is energised (lamp L on); the ignitor gas valves and the light oil valves open. Few seconds after the valves opening, the transformer is de-energised and lamp L turns off - The burner is now operating, meanwhile the actuator goes to the high flame position; after some seconds, the two-stage operation begins; the burner is driven automatically to high flame or low flame, according to the plant requirements. Operation in high or low flame is signalled by LED **N** on the burner control panel. # Control panel # PN91 - PN92 - PN93 A High flame lampB Low flame lampC Ignition transformer operation CMF Manual operation switch 0= Off 1= High flame 2= Low flame 3= Automatic Fan motor thermal cutout intervention D Fan motor therma E Burner lockout IRA Auxiliary resistors wsitch L Heavy oil solenoid lamp operation N Contrlol box reset pushbutton P Heating resistors safety thermostat Q Pre-heating tank R Modulator T Main switch # Recommendations to design heavy oil feeding plants This paragraph is intended to give some suggestions to make feeding plants for heavy oil burners. To get a regular burner operation, it is very important to design the supplying system properly. Here some suggestions will be mentioned to give a brief description. The term "heavy oil" is generic and summarises several chemical-physical properties, above all viscosity. The excessive viscosity makes the oil impossible to be pumped, so it must be heated to let it flow in the pipeline; because of the low-boiling hydrocarbons and dissolved gases, the oil must be also pressurised. The pressurisation is also necessary to feed the burner pump avoiding its cavitation because of the high suction at the inlet. The supplying system scope is to pump and heat oil. The oil viscosity is referred in various unit measures; the most common are: °E, cSt, Saybolt and Redwood scales. Table 3 shows thevarious unit convertions (e.g.: 132 cSt viscosity corresponds to 17.5°E viscosity). The diagram in shows how the heavy oil viscosity changes according to its temperature. Example: an oil with 22°E viscosity at 50°C once heated to 100°C gets a 3 °E viscosity. As far as the pumping capability, it depends on the type of the pump that pushes the oil even if on diagram in a generic limit is quoted at about 100 °E, so it is recommended to refer to the specifications of the pump provided. Usually the oil minimum temperature at the oil pump inlet increases as viscosity does, in order to make the oil easy to pump. Referring to the diagram on Fig. 2, it is possible to realise that to pump an oil with 50°E viscosity at 50°C, it must be heated at about 80°C. # Pipe heating system Pipe heating system must be provided, that is a system to heat pipes and plant components to mantain the viscosity in the pumping limits. Higher the oil viscosity and lower the ambient temperature, more necessary the pipe heating system. #### Inlet minimum pressure of the pump (both for supplying system and burner) A very low pressure leads to cavitation (signalled by its peculiar noise): the pump manifacturer declares the minimum value. Therefore, check the pump technical sheets. By increasing the oil temperature, also the minimum inlet pressure at the pump must increase, to avoid the gassification of the oil low-boiling products and the cavitation. The cavitation compromises the burner operation, it causes the pump to break too. The diagram on Fig. 3 roughly shows the inlet pump pressure according to the oil temperature. # Pump operating maximum pressure (both for the supplying system and burner) Remember that pumps and all the system components through which the oil circulates, feature an upper limit. Always read the technical documentation for each component. Schemes on and are taken from UNI 9248 "liquid fuel feeding lines from tank to burner" standard and show how a feeding line should be designed. For other countries, see related laws in force. The pipe dimensioning, the execution and the winding dimensioning and other constructive details must be provided by the installer. # Adjusting the supplying oil ring According to the heavy oil viscosity used, in the table below indicative temperature and pressure values to be set are shown. **Note:** the temperature and pressure range allowed by the supplying ring components must be checked in the specifications table of the components themselves. | | COSITY AT 50 °C | PIPELINE
PRESSURE | PIPELINE
TEMPERATURE | | | | | |------------|-----------------|----------------------|-------------------------|--|--|--|--| | cSt | (°E) | bar | ိုင | | | | | | | < 50 (7) | 1- 2 | 20 | | | | | | > 50 (7) | < 110 (15) | 1- 2 | 50 | | | | | | > 110 (15) | < 400 (50) | 1- 2 | 65 | | | | | Tab. 1 # Viscosity units conversion table | Cinematics
viscosity
Centistokes (cSt) | Engler Degrees (°E) | Saybolt
Seconds
Universal
(SSU) | Saybolt
Seconds
Furol (SSF) | Redwood
Seconds no.1
(Standard) | Redwood Seconds
no2 (Admiralty) | |--|---------------------|--|-----------------------------------|---------------------------------------|------------------------------------| | 1 | 1 | 31 | | 29 | | | 2.56 | 1.16 | 35 | | 32.1 | | | 4.3 | 1.31 | 40 | | 36.2 | 5.1 | | 7.4 | 1.58 | 50 | | 44.3 | 5.83 | | 10.3 | 1.88 | 60 | | 52.3 | 6.77 | | 13.1 | 2.17 | 70 | 12.95 | 60.9 | 7.6 | | 15.7 | 2.45 | 80 | 13.7 | 69.2 | 8.44 | | 18.2 | 2.73 | 90 | 14.44 | 77.6 | 9.3 | | 20.6 | 3.02 | 100 | 15.24 | 85.6 | 10.12 | | 32.1 | 4.48 | 150 | 19.3 | 128 | 14.48 | | 43.2 | 5.92 | 200 | 23.5 | 170 | 18.9 | | 54 | 7.35 | 250 | 28 | 212 | 23.45 | | 65 | 8.79 | 300 | 32.5 | 254 | 28 | | 87.6 | 11.7 | 400 | 41.9 | 338 | 37.1 | | 110 | 14.6 | 500 | 51.6 | 423 | 46.2 | | 132 | 17.5 | 600 | 61.4 | 508 | 55.4 | | 154 | 20.45 | 700 | 71.1 | 592 | 64.6 | | 176 | 23.35 | 800 | 81 | 677 | 73.8 | | 198 | 26.3 | 900 | 91 | 762 | 83 | | 220 | 29.2 | 1000 | 100.7 | 896 | 92.1 | | 330 | 43.8 | 1500 | 150 | 1270 | 138.2 | | 440 | 58.4 | 2000 | 200 | 1690 | 184.2 | | 550 | 73 | 2500 | 250 | 2120 | 230 | | 660 | 87.6 | 3000 | 300 | 2540 | 276 | | 880 | 117 | 4000 | 400 | 3380 | 368 | | 1100 | 146 | 5000 | 500 | 4230 | 461 | | 1320 | 175 | 6000 | 600 | 5080 | 553 | | 1540 | 204.5 | 7000 | 700 | 5920 | 645 | | 1760 | 233.5 | 8000 | 800 | 6770 | 737 | | 1980 | 263 | 9000 | 900 | 7620 | 829 | | 2200 | 292 | 10000 | 1000 | 8460 | 921 | | 3300 | 438 | 15000 | 1500 | 13700 | | | 4400 | 584 | 20000 | 2000 | 18400 | | Tab. 2 Fig. 7 # Indicative diagram showing the oil temperature at burner pump inlet vs. oil viscosity Example: if the oil has a 50°E @ 50°C viscosity, the oil temperature at the pump inlet should be 80°C (see diagram). Fig. 8 # Indicative diagram showing the oil pressure according to its temperature #### PRESSION D'ALIMENTATION POMPE Fig. 9 # Indicative diagram showing the oil atomising temperature according to its viscosity Example: if the oil has a 50°E @ 50°C viscosity, the oil atomising temperature should be between 145°C and 160°C (see diagram). # VISCOSITY vs. TEMPERATURE DIAGRAM Fig. 10 Fig. 11 - 3ID00014 v2 Hydraulic diagram - Two or more burners configuration Fig. 12 - 3ID0023 v2 - Hydraulic diagram - Single burner configuration | 3ID0023 | LEGEND | |---------|---| | POS | OIL TRAIN | | 1 | Main tank | | | OIL PUMPING UNIT | | 2 | Manual valve | | 3 | Filter | | 4 | Pump coupled to electrical motor | | 5 | Safety valve | | 6 | One-way valve | | 7 | Manual valve | | 8 | Pressure gauge | | 9 | Maximum pressure switch | | 10 | Minimum pressure switch | | | PRESSURE GOVERNOR UNIT | | 11 | Manual valve | | 12 | Pressure governor | | 13 | Needle valve | | 14 | Pressure gauge | | | DAILY TANK | | 15 | Daily tank | | 16 | Electrical
resistor | | 17 | Heating device | | 18 | Pressure gauge | | 19 | Thermometer | | 20 | High pressure switch | | 21 | Low pressure switch | | 22 | Thermostat (high) | | 23 | Thermostat (low) | | 24 | Thermostat | | 25 | Manual valve | | 26 | Manual valve | | | TO THE BURNER | | 27 | Degassing bottle | | 28 | Manual valve | | 29 | Filter (supplied loose with the burner) | | 30 | Solenoide valve | | 31 | Safety valve | | 31 | One-way valve | # Adjusting oil flow rate The light oil flow rate can be adjusted choosing a nozzle that suits the boiler/utilisation output and setting the delivery and return pressure values according to the ones quoted on the following charts. # FLUIDICS NOZZLE: REFERENCE DIAGRAM (INDICATIVE ONLY) | DIMENSIONS | FLOW R | ATE kg/h | Indicative | |------------|--------|----------|----------------------------| | DIMENSIONS | Min | Max | pessure on
return (bar) | | 40 | 13 | 40 | 19 | | 50 | 16 | 50 | 22 | | 60 | 20 | 60 | 20 | | 70 | 23 | 70 | 23 | | 80 | 26 | 80 | 23 | | 90 | 30 | 90 | 22 | | 100 | 33 | 100 | 22 | | 115 | 38 | 115 | 21 | | 130 | 43 | 130 | 22 | | 145 | 48 | 145 | 21 | | 160 | 53 | 160 | 21 | | 180 | 59 | 180 | 22 | | 200 | 66 | 200 | 21 | | 225 | 74 | 225 | 22 | | 250 | 82 | 250 | 22 | | 275 | 91 | 275 | 22 | | 300 | 99 | 300 | 23 | | 330 | 109 | 330 | 23 | | 360 | 119 | 360 | 22 | | 400 | 132 | 400 | 22 | | 450 | 148 | 450 | 22 | | 500 | 165 | 500 | 22 | | 550 | 181 | 550 | 22 | | 600 | 198 | 600 | 23 | | 650 | 214 | 650 | 23 | | 700 | 231 | 700 | 23 | | 750 | 250 | 750 | 23 | | 800 | 267 | 800 | 22 | NOZZLE SUPPLY PRESSURE = 25 bar ---- Atomisation angle according to the return pressure ----- % Flow rate viscosity at nozzle = 5 cSt ATTENTION! To achieve the maximum flow rate close completely the return line. Progressive and fully modulanting oil burners are equipped with electronic multi-thermostat Danfoss MCX, whose operation is controlled by thyristor. (for details refer to the attached technical documentation) Fig. 14 - Danfoss MCX #### ADJUSTING AIR AND FUEL RATE ATTENTION: before starting the burner up, be sure that the manual cutoff valves are open. Be sure that the mains switch is closed. **ATTENTION:** During commissioning operations, do not let the burner operate with insufficient air flow (danger of formation of carbon monoxide); if this should happen, make the fuel decrease slowly until the normal combustion values are achieved. Before starting up the burner, make sure that the return pipe to the tank is not obstructed. Any obstruction would cause the pump seal to break. IMPORTANT! the combustion air excess must be adjusted according to the values in the following chart. | Recommended combustion parameters | | | | | | | |-----------------------------------|---------------------------------|--------------------------------|--|--|--|--| | Fuel | Recommended (%) CO ₂ | Recommended (%) O ₂ | | | | | | Heavy oil | 11 ÷ 12.5 | 4.7 ÷ 6.7 | | | | | # Adjustments - brief description The air and fuel rates adjustments must be performed at the maximum ouptput first ("high flame"): see the LMV5.. related manual.. - Check that the combustion parameters are in the suggested limits. - Check the flow rate measuring it on the counter or, if it was not possible, verifying the combustion head pressure by means of a differential pressure gauge, as described on par. "Measuring the gas pressure in the combustion head". - Then, adjust the combustion values by setting the "gas/air" ratio" curvepoints (see the LMV5.. related manual). - Set, now, the low flame output, in order to avoid the low flame output increasing too much or that the flues temperature gets too low to cause condensation in the chimney. # Start-up procedure - 1 Turn the burner on. - the LMV control box starts the system test cycle: the AZL display shows the **System Test** message; at the end of the test, it shows the main page and the system stops (the safety chain is open) waiting for the startup enabling signal (standby Program phase no. 12) | Setpoint | 80°C | |-----------|------| | Act.value | 78°C | | Fuel | GAS | | Standby | 12 | | | | Main page - 3 check the fan motor rotation (see related paragraph). - 4 make the safety chain enabling the system to start up - 5 the combustion cycle starts: the system will show the operating stages - Prepurging (program phase no.30) - Driving to ignition position (program phase no.36) - Ignition position (program phase no.38) - Fuel (the fuel solenoid valves open) - Flame (the flame lights up) - Driving to low flame (the actuator drives to low flame). NOTE: the C and A, on the . Once the ignition cycle ends, the main page is shown: | Setpoint | 80°C | |-----------|------| | Act.value | 78°C | | Load | 24% | | Flame | 60% | | | | Main page Set point: temperature set-point Act value: actual temperature value Load: load percentage (burner output) Flame: percentage of flame detection current. By pressing the ENTER key the display shows the second page: | Fuel | 0.0 | Air | 1.8 | |------|-----|-----|-----| | Ax1 | | VSD | 0.0 | | Ax2 | | O2 | | | Ax3 | | Ld. | 0.0 | | | | | | Second page **Fuel**: it shows (in degrees) the fuel actuator position. **Air**: it shows (in degrees) the air actuator position. Ax1..3: auxiliaries. VSD: % value on the inverter maximum frequency O2: oxygen percentage Ld: load percentage (burner output). Press the ENTER key to go back to the main page. To access the main menu, from the main page, press the ESC key tiwce: OperationalStat Operation ManualOperation Params & Display. Main menu By pressing the ESC key once, the *Operational Status* (first item in the main menu) menu is directly shown: Normal operation Status/Reset Fault History Lockout History the *Operational Status* menu provides the following items: **Normal operation:** by selecting this item and pressing the ENTER key, the main page is showed; press ESC to go back to the main menu. Status/Reset: it shows system errors or faults occuring / it represents the lockout reset function. **Fault History:** by selecting this item and pressing the ENTER key, the Lockout History will be showed about the last 21 faults occured. **Lockout History:** by selecting this item and pressing the ENTER key, the Lockout History will be showed about the last 9 lockouts occured, and the related date and hour. Alarm act/deact: enable/disable the horn in case of alarm. # Fault History To visualise the Fault History, select it and press the ENTER key. The message will be as: | 1 Class: | | | 05Gas | |-----------|----|--------|-------| | code | BF | Phase: | 10 | | Diag.: | 00 | Lod: | 0.0 | | Start No. | | | 88 | | | | | | alternating by an error message as: O2 control and limiter automat deactivated To see the other Fault History pages, press the arrow keys. To exit the Fault History pages, press ESC. # **Lockout History** To visualise the Lockout History, choose the related item and press ENTER. The message will be: | 1 | 10.08.07 | | 12 17 | |-----------|----------|----|-------| | 1 | 10.06.07 | | 13.47 | | C:71 | D:00 | F: | 12 | | Start No. | | | 88 | | Load | 0.0 | | Gas | | | | | | alternating by an error message as:к To see the other Lockout History pages, press the arrow keys. To exit the Lockout History pages, press ESC. # Setting the temperature set-point value To set the temperature set-point value, that is the generator operating temperature; proceed as follows. From the main page, enter the main menu by pressing the ESC key twice: OperationalStat Operation ManualOperation Params & Display. by means of the arrow keys, select "Params&Display", press ENTER: the system will ask you to enter the proper password Access w-out PW Access Serv Access OEM Access LS by means of the arrow keys, select "Access w-out pass" (access without password - user level), confirm by pressing ENTER. The other levels require password reserved to the Technical Service, to the Manifacurer, etc. The menu shown accessing without password is the following: BurnerControl RatioControl O2Contr./Guard. LoadController Choose "LoadController" and press ENTER: the following menu is shown: ControllerParam Configuration Adaption SW Version Choose "ControllerParam" and press ENTER: the following menu is shown: ContrlParamList MinActuatorStep SW_FilterTmeCon SetPointW1 Choose "SetPointW1" and press ENTER: | SetpointW1 | | |------------|-----| | Curr: | 90° | | New: | 90° | | | | Curr: it shows the current set-point; use the arrows keys to change. **NOTE:** the availabel range for this parameter depends on the probe provided; the unit measure of the detected value and its limits are bound up with parameters set at the "Service" level. Once the new set-point is set, confirm by pressing ENTER, otherwise exit without changings by pressing ESC. Press ESC to exit the set-point programming mode. Once the temperature set-point W1 is imposed, set the Switch-on (SDon) and the Switch-off (SDoff) point of the 2-position controller: To set these values, select the item SD_ModOn (SDOn), by scrolling down the "Load controller" menu with the arrow keys and press ENTER: | SetpointW1 | | |------------|--| | SetpointW2 | | | SD_ModOn | | | SD_ModOff | | the display will show: | SD_ModOn | | |----------|------| | Curr:: | 1.0% | | New: | 1.0% | | | | The deafult value for this parameter is 1% that is, the burner will light again at a temperature 1% lower than the set-point. Change value, if needed, by means of the arrow keys; press ENTER to confirm and the press ESC to exit. Press only ESC to exit without changing. Now choose SD ModOff always scrolling down the Load Controller menu, by menas of the arrow keys, and press ENTER. | SetpointW1 | | |------------|--| | SetpointW2 | | | SD_ModOn | | | SD_ModOff | | the display will show: SD_ModOff Curr:: 10.0% New: 10.0% The deafult value for this parameter is 10% that is, the burner will turn off at a temperature 1% higher than the set-point. Change value, if needed, by means of the arrow keys; press ENTER to confirm
and the press ESC to exit. Press only ESC to exit without changing. Press the ESC key until the following menu is shown: BurnerControl RatioControl O2Contr./Guard. LoadController scroll this menu down until the tiem "AZL" is reached | LoadController | |----------------| | AZL | | Actuators | | VSD Module | confirm by pressing ENTER: Times Languages DateFormat PhysicalUnits Times: it sets the "Summer (SUM) Time / Winter (WIN) Time" operation and the continent (EU - Europe; US - United States) Sum/Winter Time Time EU/US choose the Summertime/Wintertime mode desired and cofirm by pressing ENTER; press ESC to exit. Set the time zone (Time EU/US) in the same way. Languages: it allows setting the current language Language Curr:: Italiano New: English choose the desired language and cofirm by pressing ENTER; press ESC to exit. DateFormat: it allows setting the date format as DD-MM-YY (day-month-year) or MM-DD-YY (month-day-year) DateFormat Curr:: DD-MM-YY New: MM-DD-YY choose the desired format and cofirm by pressing ENTER; press ESC to exit. PhysicalUnits: it allows setting the measuring units for temperature and pressure Settable temperature units: °C or °F Settable pressure units: bar or psi. - choose the desired unit and cofirm by pressing ENTER; press ESC to exit. - choose the temperature and pressure unit and cofirm by pressing ENTER; press ESC to exit. # System lockout If the system locks out, the following message will appear: | 1 | 10.08.07 | | 13.47 | |-----------|----------|----|-------| | C:71 | D:00 | F: | 12 | | Start No. | | | 88 | | Load | 0.0 | | Gas | | | | | | call the Technical Service and tell the message data. # Cold start thermal shock (CSTP) If the generator cannot suffer thermal shocks, the CSTP (Cold Start Thermal Schock) function can be enabled. This function is already set by the Technical service (access by reserved password). if this function is enabled, when the burner starts upthe "Thermal shock protection activated" message will be showed. If this function is not enabled, after startup, the burner will rapidly increase the load according to the requested value and, if necessary, to the maximum output. # Manual mode To by-pass the thermal protection or not to let the buner operate in high flame stage (maximum output) after ignition, the manual mode is provided. To choose the manual mode (Manual Operation), use the SELECT arrow keys | OperationalStat | | |-------------------|--| | Operation | | | ManualOperation | | | Params & Display. | | Items to be set are the following: | SetLoad | | |------------------|--| | Autom/Manual/Off | | | | | | | | SetLoad: to set the required load percentage | SetLoad | | |---------|-------| | Curr:: | 0.0% | | New: | 20.0% | | | | set the required percentage and confirm by pressing ENTER; press ESC to exit. choose "Autom/Manual/Off: | SetLoad | |------------------| | Autom/Manual/Off | | | | | Autom/Manual/Off Curr:: Automatic New: Burner On three modes are provided: Automatic: automatic operation Burner on: manual operation Burner off: burner in stand-by If the BurnerOn mode is choosen, the burner does not follow the modulator and probe settings, but operates at the set load. Caution: if BurnerOff mode is selected, the burner stays in stand-by. Caution: in the BurnerOn mode, the safety thresholds are set by the Technical Service. For further details, see the LMV5x annexed manuals. # Oil circuit The fuel is pushed into the pump 1 to the nozzle 3 at the delivery pressure set by the pressure governor. The solenoid valve 2 stops the fuel immission into the combustion chamber. The fuel flow rate that is not burnt goes back to the tank through the return circuit. The spill-back nozzle is feeded at constant pressure, while the return line pressure is adjusted by means of the pressure governor controlled by an actuator coupled to an adjusting cam. The fuel amount to be burnt is adjusted by means of the burner actuator according to the adjustments set (see prevoius paragraph). #### PART III: MAINTENANCE At least once a year carry out the maintenance operations listed below. In the case of seasonal servicing, it is recommended to carry out the maintenance at the end of each heating season; in the case of continuous operation the maintenance is carried out every 6 months. WARNING: ALL OPERATIONS ON THE BURNER MUST BE CARRIED OUT WITH THE MAINS DISCONNECTED AND THE FUEL MANAUL CUTOFF VALVES CLOSED! ATTENTION: READ CAREFULLY THE "WARNINGS" CHAPTER AT THE BEGINNIG OF THIS MANUAL.. #### **ROUTINE MAINTENANCE** - Clean and examine the oil filter cartridge and replace it if necessary. - Examine the condition of the oil flexible tubing and check for possible leaks. - Check and clean if necessary the oil heaters and the tank, according to the fuel type and its use; remove the heaters flange fixing nuts and remove the heaters from the tank: clean by using steam or solvents and not metallic things. - Clean and examine the filter inside the oil pump. Filter must be thoroughly cleaned at least once in a season to ensure correct working of the fuel unit. To remove the filter, unscrew the four screws on the cover. When reassemble, make sure that the filter is mounted with the feet toward the pump body. If the gasket between cover and pump housing should be damaged, it must be replaced. An external filter should always be installed in the suction line upstream of the fuel unit. - Remove and clean the combustion head (page 37). - Examine and clean the ignition electrodes, adjust and replace if necessary (see page 37). - Examine and clean the detection probe, adjust and replace if necessary (see page 39). - Examine the detection current. - Remove and clean (page 38) the heavy oil nozzle (Important: use solvents for cleaning, not metallic tools) and at the end of the maintenance procedures, after replacing the burner, turn it on and check the shape of the flame; if in doubt replace the nozzle. Where the burner is used intensively it is recommended to replace the nozzle as a preventive measure, at the begin of the operating season. - Clean and grease joints and rotating parts. IMPORTANT: Remove the combustion head before checking the ignition electrodes. CAUTION: avoid the contact of steam, solvent and other liquids with the electric terminals of the resistor. On flanged heaters, replace the seal gasket before refitting it. Periodic inspections must be carried out to determine the frequency of cleaning. # Self-cleaning filter Fitted only for oil viscosity >110 cSt @ 50 °C. Periodically turn the knob to clean the filter. # Removing the oil gun, replacing the nozzle and the electrodes **ATTENTION:** avoid the electrodes to get in touch with metallic parts (blast tube, head, etc.), otherwise the boiler operation would be compromised. Check the electrodes position after any intervention on the combustion head. To remove the oil gun, proceed as follows: - 1 remove the combustion head as described on the prevoius paragraph; - 2 loosen the **VL** screw and remove the oil gun and the electrodes: check the oil gun, replace it fi necessary; - 3 after removing the oil gun, unscrew the nozzle and replace it if necessary; 4 in order to replace the electrodes, unscrew the **VE** fixing screws and remove them: place the new electrodes being careful to observe the measures showed on pag.: reassemble following the reversed procedure. # Removing the combustion head - Remove the cover H. - Slide the UV photoelectric cell out of its housing. - Unscrew the oil connections E (Fig. 21) connecting the flexible pipes to the lance L and remove the whole assembly as shown in Fig. 21-Fig. 22. - clean the combustion head by means of a vacuum cleaner; to scrape off the scale use a metallic brush. Note: to replace the combustion head reverse the procedure described above. - 1 Inlet - 2 Return - 3 Lance opening - 4 Heating wire (only for oil viscosity > 110 cSt @ 50 °C) - 5 Cartdrige-type heater - H Cover - L Oil lance - E Oil piping connections Fig. 22 # Removing the oil gun, replacing the nozzle and the electrodes **ATTENTION:** avoid the electrodes to get in touch with metallic parts (blast tube, head, etc.), otherwise the boiler operation would be compromised. Check the electrodes position after any intervention on the combustion head. To remove the oil gun, proceed as follows: - 1 remove the combustion head as described on the previous paragraph; - 2 loosen the VU screw and remove the oil gun: check the oil gun, replace it fi necessary; - 3 after removing the oil gun, unscrew the nozzle and replace it if necessary; - 4 in order to replace the electrodes, unscrew the **VB** fixing screws and remove them: place the new electrodes being careful to observe the measures shown on next paragraph: reassemble following the reversed procedure. Caution: adjust the nozzle position, by means of the VU screw. Fig. 23 ## Setting the combustion head position If necessary, change the combusiton head position: to let the burner operate at a lower output, loose the **VB** screw and move progressively back the combustion head towards the MIN position, by turning clockwise the **VRT** ring nut. Fasten **VB** screw when the adjustment is accomplished (Fig. 24). #### Nozzle and electrodes correct position .Place the nozzle according to the combustion head; unscrew **VB** and move the combustion head. Check the ignition electrodes at the end of the procedure. Quotes are referred in mm. Fig. 25 ## Checking the detection current To check the detection current follow the diagram on Fig. 26. If the signal is less than the value indicated, check the position of the detection electrode or detector, the electrical contacts and, if necessary, replace the electrode or the detector. Minimum detection signal: 3.5Vdc Fig. 26Detection with detector QRI... Рис. 27 ## Cleaning and replacing the detection photoresistor When cleaning the photoresistive detector, always use a clean cloth. If necessary, remove it from its slot to replace it. ##
Seasonal stop To stop the burner in the seasonal stop, proceed as follows: - 1 turn the burner main switch to 0 (Off position) - 2 disconnect the power mains - 3 close the fuel valve of the supply line ## Burner disposal In case of disposal, follow the instructions according to the laws in force in your country about the "Disposal of materials". ## **WIRING DIAGRAMS** Refer to the attached wiring diagrams. #### **WARNING** - 1 Electrical supply 230V 50Hz 1 a.c./400V 50Hz 3N a.c. - 2 Do not reverse phase with neutral 3 Ensure burner is properly earthed - 4 Refer to the attached document "RECOMMENDATIONS FOR LMV5x CONNECTIONS" (#) UTILIZZATO SOLO PER VERSIONI "NAFTA 400 cSt a 50 °C" USED FOR "OIL 400 cSt a 50 °C" VERSIONS ONLY | Data | 10/02/2014 | PREC. | FOGLIO | | |------------------|------------|-------|--------|--| | Revisione | 00 | 3 | 4 | | | | 0.400 | SEGUE | TOTALE | | | Dis. N. U | 9 – 0409 | 5 | 9 | | LA SEQUENZA DEI SERVOCOMANDI PUO' ESSERE DIVERSA; E' IMPORTANTE PERO' CHE L'ULTIMO SIA CON IL PONTE "BUS TERMINATION" THE CONNECTIONS OF ACTUATORS TO LMV CAN BE DIFFERENT; PLEASE NOTE THAT THE LAST ACTUATOR MUST HAVE THE BRIDGE "BUS TERMINATION" | Data | 10/02/2014 | PREC. | FOGLIO | | |------------------|------------|-------|--------|--| | Revisione | 00 | 5 | 6 | | | | 0.400 | SEGUE | TOTALE | | | Dis. N. U | 9 – 0409 | 7 | 9 | | | Data | 10/02/2014 | PREC. | FOGLIO | |-----------|------------|-------|--------| | Revisione | 00 | 6 | 7 | | | 0.400 | SEGUE | TOTALE | | Dis. N. O | 9 – 0409 | 8 | 9 | | Sigla/Item | Foglio/Sheet | Funzione | Function | |---------------|--------------|--|---| | AGG5.220 | 5 | TRASFORMATORE AUSILIARIO | AUXILIARY TRANSFORMER | | AZL 52 | 6 | INTERFACCIA UTENTE | USER INTERFACE | | EVN | 4 | ELETTROVALVOLA NAFTA | OIL SOLENOID VALVE | | FU1.0 | 1 | FUSIBILI LINEA PRERISCALDATORE [RP] | LINE PRE-HEATING [RP] FUSES | | FU1.2 | 1 | FUSIBILI LINEA BRUCIATORE | BURNER LINE FUSES | | FU1.6 | 1 | FUSIBILE LINEA AUSILIARI | AUXILIARY LINE FUSE | | FU1.6A | 1 | FUSIBILE LINEA AUSILIARI | AUXILIARY LINE FUSE | | FU1.8 | 1 | FUSIBILE LINEA RESISTENZE AUSILIARIE | LINE AUXILIARY HEATERS FUSE | | FU1.9 | 1 | FUSIBILE RESISTENZE AUSILIARIE | AUXILIARY HEATERS FUSE | | FU3.0 | 2 | FUSIBILE AUSILIARIO | AUXILIARY FUSE | | FU3.1 | 2 | FUSIBILE AUSILIARIO | AUXILIARY FUSE | | GTS xxA (1) | 2 | TIRISTORE | THYRISTOR | | GTS xxA (2) | 2 | TIRISTORE | THYRISTOR | | IG | 1 | INTERRUTTORE LINEA BRUCIATORE | BURNER LINE SWITCH | | IL | 1 | INTERRUTTORE LINEA AUSILIARI | AUXILIARY LINE SWITCH | | IR | 1 | INTERRUTTORE LINEA RESISTENZE PRERISCALDATORE [RP] | PRE-HEATING RESISTOR [RP] LINE SWITCH | | IRA | 1 | INTERRUTTORE RESISTENZE AUSILIARIE | AUXILIARY HEATERS SWITCH | | IRAux. | 1 | INTERRUTTORE RESISTENZE AUSILIARIE | AUXILIARY HEATERS SWITCH | | KA3.2 | 3 | RELE' AUSILIARIO SEGNALAZIONE GUASTO CONTATTORE RESISTENZE | AUXILIARY RELAY FOR RESISTOR CONTACTOR FAILURE | | KM3.1 | 3 | CONTATTORE RESISTENZE PRERISCALDATORE [RP] | PRE-HEATING RESISTOR [RP] CONTACTOR | | KM3.3 | 3 | CONTATTORE MOTORE VENTILATORE | FAN MOTOR CONTACTOR | | KTCI | 2 | RELE' AUSILIARIO | AUXILIARY RELAY | | KTCN | 2 | RELE' AUSILIARIO | AUXILIARY RELAY | | KTRS | 2 | RELE' AUSILIARIO | AUXILIARY RELAY | | LB | 3 | LAMPADA SEGNALAZIONE BLOCCO BRUCIATORE | INDICATOR LIGHT FOR BURNER LOCK-OUT | | LEVN | 4 | LAMPADA SEGNALAZIONE APERTURA [EVN] | INDICATOR LIGHT FOR OPENING OF ELECTRO-VALVE [EVN] | | LF | 4 | LAMPADA SEGNALAZIONE FUNZIONAMENTO BRUCIATORE | INDICATOR LIGHT BURNER OPERATION | | LF | 4 | LAMPADA SEGNALAZIONE FUNZIONAMENTO BRUCIATORE | INDICATOR LIGHT BURNER OPERATION | | LOAD-0/4÷20mA | 5 | SEGNALE IN CORRENTE PER % CARICO | CURRENT SIGNAL FOR % LOAD | | LOAD-0÷10V | 5 | SEGNALE IN TENSIONE PER % CARICO | VOLTAGE SIGNAL FOR % LOAD | | LRP | 3 | LAMPADA SEGNALAZIONE FUNZIONAMENTO PRERISCALDATORE [RP] | INDICATOR LIGHT FOR PRE-HEATING RESISTOR [RP] OPERATION | | LT | 4 | LAMPADA SEGNALAZIONE BLOCCO TERMICO MOTORE VENTILATORE | INDICATOR LIGHT FOR FAN MOTOR OVERLOAD THERMAL CUTOUT | | (×) | (#) | |--|---| | UTILIZZATO SOLO PER VERSIONI "NAFTA 110 cSt a 50 °C" E "NAFTA 400 cSt a 50 °C" | UTILIZZATO SOLO PER VERSIONI "NAFTA 400 cSt a 50°C" | | USED FOR "OIL 110 cSt a 50 °C " AND "OIL400 cSt a 50 °C " VERSIONS ONLY | USED FOR "OIL 400 cSt a 50 °C" VERSIONS ONLY | | Data 10/02/2014 | | PREC. | FOGLIO | | |------------------|----------|-------|--------|--| | Revisione | 00 | 7 | 8 | | | | 0.400 | SEGUE | TOTALE | | | Dis. N. U | 9 – 0409 | 9 | 9 | | | Sigla/Item | Foglio/Sheet | Funzione | Function | |-------------------|--------------|---|---| | LTA | 3 | LAMPADA SEGNALAZIONE TRASFORMATORE DI ACCENSIONE | IGNITION TRANSFORMER INDICATOR LIGHT | | LTRS | 3 | LAMPADA SEGNALAZIONE BLOCCO TERMOSTATO DI SICUREZZA [TRS] | INDICATOR LIGHT FOR [TRS] SAFETY THERMOSTAT | | MCX06C | 2 | REGOLATORE TEMPERATURE NAFTA | OIL TEMPERATURE REGULATOR | | MV | 1 | MOTORE VENTILATORE | FAN MOTOR | | PS | 3 | PULSANTE SBLOCCO FIAMMA | FLAME UNLOCK BUTTON | | PT100 | 5 | SONDA DI TEMPERATURA | TEMPERATURE PROBE | | QAE2/PT1000 | 5 | SONDA DI TEMPERATURA | TEMPERATURE PROBE | | QRI | 4 | SONDA UV RILEVAZIONE FIAMMA | UV FLAME DETECTOR | | RA | 1 | RESISTENZE AUSILIARIE | AUXILIARY HEATERS | | RP | 1 | RESISTENZE PRERISCALDATORE NAFTA | PRE-HEATING TANK RESISTORS | | S-EXIT | 2 | SONDA TEMPERATURA USCITA BARILOTTO | TANK OUTLET OIL TEMPERATURE PROBE | | S-TCI | 2 | SONDA TEMPERATURA CONSENSO IMPIANTO | PLANT CONSENT TEMPERATURE PROBE | | S-TCN | 2 | SONDA TEMPERATURA CONSENSO NAFTA | OIL CONSENT TEMPERATURE PROBE | | S-TR | 2 | SONDA TEMPERATURA RESISTENZE | RESISTOR TEMPERATURE PROBE | | SD-4÷20mA | 5 | SEGNALE IN CORRENTE | CURRENT SIGNAL | | SD-PRESS | 5 | SONDA DI PRESSIONE | PRESSURE PROBE | | SIEMENS LMV51.100 | 3 | APPARECCHIATURA DI COMANDO | CONTROL SCHEME | | SQM4x AIR | 6 | SERVOCOMANDO SERRANDA ARIA | AIR DAMPER ACTUATOR | | SQM4x OIL | 6 | SERVOCOMANDO REGOLATORE OLIO | OIL REGULATOR ACTUATOR | | ST | 4 | SERIE TERMOSTATI/PRESSOSTATI | SERIES OF THERMOSTATS OR PRESSURE SWITCHES | | TA | 3 | TRASFORMATORE DI ACCENSIONE | IGNITION TRANSFORMER | | TRAFO | 2 | TRASFORMATORE AUSILIARIO | AUXILIARY TRANSFORMER | | TV | 1 | TERMICO MOTORE VENTILATORE | FAN MOTOR THERMAL | | (x) | (#) | |--|--| | UTILIZZATO SOLO PER VERSIONI "NAFTA 110 cSt a 50 °C" E "NAFTA 400 cSt a 50 °C" | UTILIZZATO SOLO PER VERSIONI "NAFTA 400 cSt a 50 °C" | | USED FOR "OIL 110 cSt a 50 °C " AND "OIL400 cSt a 50 °C " VERSIONS ONLY | USED FOR "OIL 400 cSt a 50 °C" VERSIONS ONLY | | Data | 10/02/2014 | PREC. | FOGLIO | |------------------|------------|-------|--------| | Revisione | 00 | 8 | 9 | | 0. | 0.400 | SEGUE | TOTALE | | Dis. N. U | 9 – 0409 | / | 9 | ## **TROUBLESHOOTING** | CAUSES/TROUBLES | DOES NOT START
UP | CONTINUES PRE-
PURGUE | BURNER STARTS
UP WITH COLD OIL | DOES NOT IGNITE
AND GOES TO
SHUT DOWN | DOES NOT PASS
TO HIGH FLAME | GOES TO SHUT
DOWN DURING
OPERATION | GOES OFF AND
REPEATS THE
CYCLE DURING
OPERATION | |--|----------------------|--------------------------|-----------------------------------|---|--------------------------------|--|--| | MAIN SWITCH OFF | • | | | | | | | | LINE FUSES BLOWN | • | | | | | | | | MAXIMUM THERMOSTAT MALFUNCTION | • | | | | | | | | FAN THERMAL CUTOUT TRIPPED | • | | | | | | | | AUXILIARY FUSE BLOWN | • | | | | | | | | OIL RESISTOR FAULTY | • | | • | | | | | | OIL ENABLING THERMOSTAT TRIPPED | • | | • | | | | | | CONTROL UNIT MALFUNCTION | • | • | | • | • | • | • | | AIR SERVOCONTROL MALFUNCTION | | | | | • | | | | CIRCUIT ENABLING THERMOSTAT | | • | | | • | | | | SMOKY FLAME | | | | | | • | • | | IGNITION TRANSFORMER FAULTY | | | | • | | | | | IGNITION ELECTRODES WRONGLY POSITIONED | | | | • | | | | | DIRTY NOZZLE | | | | • | | • | | | FAULTY OIL VALVE | | | | • | | | • | | FAULTY OR DIRTY PHOTORESISTOR | | | | | | | • | | FAULTY RESISTOR THERMOSTAT | • | | | | | | | | FAULTY HIGH-LOW FLAME THERMOSTAT | | | | | • | | | | ACTUATOR CAM NOT CALIBRATED | | | | | • | | | | LOW OIL PRESSURE | | | | • | | • | • | ## BURNER EXPLODED VIEW | ITEM | DESCRIPTION | |---------|--------------------------------| | 1.1 | NIPPLE | | 1.2 | ELBOW | | 1.3 | NIPPLE | | 1.4 | PUMP | | 2.1.1 | POWER CONTROLLER | | 2.1.2 | FRONT CONTROL PANEL | | 2.1.3 | LIGHT | | 2.1.4 | LIGHT | | 2.1.5 | LOCK-OUT RESET BUTTON | | 2.1.6 | PROTECTION | | 2.1.7 | SWITCH | | 2.1.8 | SWITCH | | 2.2 | BRACKET | | 2.3 | BOARD | | 2.4 | COVER | | 3.1.1 | LONG IGNITION ELECTRODE | | 3.1.2 | LONG IGNITION ELECTRODE | | 3.1.3 | COMBUSTION HEAD | | 3.1.4 | IGNITION CABLE | | 3.2 | GUN TERMINAL | | 3.3 | STANDARD COMPLETE OIL GUN | | 3.3.1.1 | NIPPLE | | 3.3.1.2 | RESISTOR FIXING SCREW | | 3.3.1.3 | OIL MANIFOLD | | 3.3.1.4 | RESISTOR | | 3.3.2 | NOZZLE | | 3.3.3 | NOZZLE HOLDER | | 3.4 | OIL GUN HOLDER | | 3.5 | COMBUSTION HEAD ADJUSTING PIPE | | 4.1 | SPACER | | 4.2 | FAN WHEEL | | 4.3 | MOTOR | | 4.4 | GAUGE RING | | 5.1 | STRAIGHT UNION | | 5.2.1 | OIL FILTER | | 5.2.2 GASKET5.2.3 GAS BLEEDING VALVE5.2.4 THERMOMETER | | |---|--| | 5.2.4 THERMOMETER | | | | | | 1 | | | 5.2.5 MUFF | | | 5.3 COVER | | | 5.4 REDUCTION | | | 5.5 OIL PRE-HEATER | | | 5.6
SHEATH | | | 5.7 RESISTOR | | | 6.1 NIPPLE | | | 6.2 STRAIGHT JOINT | | | 6.3 UNION ELBOW | | | 6.4 OIL SOLENOID VALVE | | | 6.5 REDUCTION | | | 6.6 OIL MANIFOLD | | | 6.7 CONNECTOR | | | 7.1 UNION ELBOW | | | 7.2 STRAIGHT UNION | | | 7.3 UNION ELBOW | | | 7.4 SCREW | | | 7.5 ADJUSTING ROD | | | 7.6 REDUCTION | | | 7.7 WASHER | | | 7.8 BUSH | | | 7.9 BEARING | | | 7.10 PRESSURE GOVERNOR | | | 7.11 | | | 7.12 BRACKET | | | 7.13 BRACKET | | | 8.1.1 SPACER | | | 8.1.2 BUSH | | | 8.1.3 ACTUATOR | | | 8.1.4 ACTUATOR SHAFT | | | 8.1.5 BRACKET | | | 8.2 NET | | | ITEM | DESCRIPTION | | | | | | |--------|---------------------|--|--|--|--|--| | 8.3 | AIR INTAKE DAMPER | | | | | | | 8.4 | AIR INTAKE DAMPER | | | | | | | 8.5 | AIR INTAKE | | | | | | | 8.6 | LOUVER SHAFT | | | | | | | 8.7 | LOUVER SHAFT | | | | | | | 8.8 | ADJUSTING CAM SHAFT | | | | | | | 8.9 | ADJUSTING CAM | | | | | | | 8.10.1 | SCREW | | | | | | | 8.10.2 | SCREW | | | | | | | 8.10.3 | SPACER | | | | | | | 8.10.4 | CAM | | | | | | | 8.10.5 | LEVERAGE | | | | | | | 8.10.6 | ROD | | | | | | | 8.10.7 | JOINT | | | | | | | 8.10.8 | JOINT | | | | | | | 9.1 | FAIRLEAD | | | | | | | 9.2 | FAIRLEAD | | | | | | | 10 | AIR INLET CONE | | | | | | | 11 | BURNER HOUSING | | | | | | | 11.1 | COVER | | | | | | | 12 | GENERATOR GASKET | | | | | | | 13 | RING NUT | | | | | | | 14 | INSPECTION GLASS | | | | | | | 15 | PHOTORESISTOR | | | | | | | 16.1 | PIN | | | | | | | 16.2 | ELASTIC RING | | | | | | | 16.3 | ELASTIC RING | | | | | | | 16.4 | HALF-COUPLING | | | | | | | 16.5 | HALF-COUPLING | | | | | | | 16.6 | HALF-COUPLING | | | | | | | 16.7 | HALF-COUPLING | | | | | | | 17 | BRACKET | | | | | | | 18 | RESISTOR | | | | | | | 19 | STANDARD BLAST TUBE | | | | | | | | | | | | | | C.I.B. UNIGAS - M039299CA ## USER MANUAL OF MULTI-THERMOSTAT MCX06C MCX06C is a multi-thermostat with four 100k NTC inputs. It can control up to 4 temperatures showing them (not more than 2 at the same time) on a couple of displays. It is used to check and adjust oil heater temperatures. #### **User interface:** Device: #### Note: In normal operation, the display A shows the oil tank resistor temperature (probe Pb1). In normal operation, the display B shows the oil output temperature (probe Pb3). #### Connections from terminal side: #### **Probe connection:** input Al1 = probe Pb1 = set-point "tr" = oil heater temperature probe; input Al2 = probe Pb2 = set-point "tCl" = plant consent temperature probe (when installed); input Al3 = probe Pb3 = set-point "OlL" = oil heater output temperature probe (PID regulation); input **AI4** = probe **Pb4** = set-point "**tcn**" = oil heater consent temperature probe. #### Menu: To enter the menu below, keep pushing **ENTER** for more than 3 s. | Menu code | enu code Sub-menu Function code | | Notes | |-----------|---------------------------------|------------------------|---| | Prb | | Probes values | You can see in sequence the 4 probe values (UP and DOWN keys): the probe code is on display A (Pb1,, Pb4) and the probe value is on display B (not fitted or out of work probes show ""). | | Log | Login | | It defines the access level to menu and parameters (password) | | | PAS | Password | Password input | | Par | | Parameters menu | Access to parameters (you have to login first) | | | CnF | Configuration menu | Parameter configuration | | | rEG | Regulation menu | Set to set-point, probe, thresholds etc. | | ALA | | Alarm menu | Access to alarm management | | | Act | Active alarms | Show the active alarms | | | rES | Reset alarms & Warning | Reset of the manual reset alarms and warning | | Loc | | Lock/Unlock functions | Not used | | InF | rEL | Software version | Installed software version | | tUN | | Autotuning | Activation On, deactivation ESC PID parameter autotuning | ## Alarms & Warning: When the red triangle on the top left lights, one or more alarms are activated. When the red key on the left lights, the output N05-C5 is active and the relay **KTRS** switches the resistors OFF. Check the reason, correct the failure and, as soon as the temperature is lower than **trS**, reset it through **ALA/rES**. In order to show active alarms and warnings, select the relevant menu through **ALA/Act**.and, using the **UP** and **DOWN** buttons, scroll the lines. In order to perform the manual reset, select ALA/rES. | Code | Description | Sourse | Active simbol | Reset type | |------|----------------------------------|-----------------------|---------------|------------| | trS | High temperature resistors alarm | probe Pb4 > value trS | red key | Manual | | EP1 | Probe Pb1 fault | Probe Pb1 fault | red triangle | Automatic | | EP2 | Probe Pb2 fault | Probe Pb2 fault | red triangle | Automatic | | EP3 | Probe Pb3 fault | Probe Pb3 fault | red triangle | Automatic | | EP4 | Probe Pb4 fault | Probe Pb4 fault | red triangle | Automatic | ## Set point adjustment: All the parameters inside the Par menu are locked by a password. The user can modify only set points (menu **rEG**), without using any passwords. The oil viscosity at the nozzle, should be about 1,5%, which guarantees correct and safe functioning of the burner. The temperature values in the table, guarantee the respect of that parameter and are valid when the pre heating tank is installed on the burner. For different configurations, please refer to the chapter "Recommendations to design heavy oil feeding plants" in the burner manual. Here below recommended set points: | М | enu pa | ath | | Oil viscosity at 50 ℃ according to the letter show n in the burner model | | | | | | |-----|--------|-----|---|--|-----------|-----------------------|------------------------|-------------------------|--| | | | | | P N E D | | | | | | | | | | | 89 cSt | < 50 cSt | > 50 cSt
< 110 cSt | > 110 cSt
< 400 cSt | > 400 cSt
< 4000 cSt | | | | | | | 12 E | < 7℃ | > 7 €
< 15 € | > 15 ℃
< 50 ℃ | > 50 °E
< 530 °E | | | Par | | | | | | | | | | | rEG | Pb1 | tr | Oil heater temperature probe | parameter not visible | | | | | | | | Pb2 | tCl | Plant consent temperature probe (when installed) | 20 ℃ | 70 ℃ | 70 ℃ | 70 ℃ | | | | | Pb3 | Oil | oil heater output
temperature probe (PID
regulation); | 60-70 ℃ | 110-120 ℃ | 120-130 ℃ | 130-140 ℃ | 140-150° C | | | | | SP0 | Set-point oil heater with oil pump stopped (stand-by) | 45 ℃ | 120 ℃ | 130 ℃ | 140 ℃ | 150 ℃ | | | | Pb4 | tcn | Oil heater consent temperature probe | 40 ℃ | 100 ℃ | 100 ℃ | 110 ℃ | 120 ℃ | | | | | trS | Safety temperature tank resistors (manual reset) | 120 ℃ | 190-200 ℃ | 190-200 ℃ | 190-200 ℃ | 190-200 ℃ | | The above temperature values are suggested and refer to a plant designed according to the prescriptions in the burner user manual. The suggested values can change in reference to the fuel oil specifications. C.I.B. UNIGAS S.p.A. Via L.Galvani, 9 - 35011 Campodarsego (PD) - ITALY Tel. +39 049 9200944 - Fax +39 049 9200945/9201269 web site: www.cibunigas.it - e-mail: cibunigas@cibunigas.it Note: specifications and data subject to change without notice. Errors and omissions excepted. # **Siemens LMV5x** **Service Manual** M12920CC rev 2.1 08/2017 #### Warnings: To avoid injury to persons, damage to property or the environment, the following warning notes must be observed #### **Qualified personal** In the sense of this documentation, qualified personal are those who are knowledgeable and qualified to install, mount, commission, operate and service / maintain LMV5 system together with burner & boiler products. The personal must have the appropriate qualifications to carry out these activities, for example: Trained and authorized to energize and de-energize, ground and tag circuits and equipment according to applicable safety standards. Trained or instructed according to the latest related standards (e.g. EN298, EN676, EN267, ..). #### Notes of caution: The equipment must be installed in compliance with the regulations in force, following the manufacturer's instructions, by qualified personnel. Qualified personnel means those having technical knowledge in the field of components for civil or industrial heating systems, sanitary hot water generation and particularly service centres authorised by the manufacturer. Improper installation may cause injury to people and animals, or damage to property, for which the manufacturer cannot be held liable. Remove all packaging material and inspect the equipment for integrity. In case of any doubt, do not use the unit - contact the supplier. The packaging materials (wooden crate, nails, fastening devices, plastic bags, foamed polystyrene, etc), should not be left within the reach of children, as they may prove harmful. Before any cleaning or servicing operation, disconnect the unit from the mains by turning the master switch OFF, and/or through the cut- out devices that are provided. Make sure that inlet or exhaust grilles are unobstructed. In case of breakdown and/or defective unit operation, disconnect the unit. Make no attempt to repair the unit or take any direct action. Contact qualified personnel only. Units shall be repaired exclusively by a servicing centre, duly authorised by the manufacturer, with original spare parts. Failure to comply with the above instructions is likely to impair the unit's safety. To ensure equipment efficiency and proper operation, it is essential that maintenance operations are performed by qualified personnel at regular intervals, following the manufacturer's instructions. When a decision is made to discontinue the use of the equipment, those parts likely to constitute sources of danger shall be made harmless. In case the equipment is to be sold or transferred to another
user, or in case the original user should move and leave the unit behind, make sure that these instructions accompany the equipment at all times so that they can be consulted by the new owner and/or the installer. For all the units that have been modified or have options fitted then original accessory equipment only shall be used. This unit shall be employed exclusively for the use for which it is meant. Any other use shall be considered as improper and, there- fore, dangerous. The manufacturer shall not be held liable, by agreement or otherwise, for damages resulting from improper installation, use and failure to comply with the instructions supplied by the manufacturer. | 1 WIRING RECOMMENDATIONS | 4 | |---|------| | 1.1 Earthing | 4 | | 1.1.1 TN earthing system | 4 | | 1.1.2 Protective Earth (PE) and Functional Earth (FE) | 4 | | 1.2 .Frequency inverter / Variable Speed Drive (VSD) | 5 | | 1.3 Ignition electrodes and transformers | 5 | | 1.3.1 Recommendations | 6 | | 1.3.2 Shielding | 6 | | 1.4 Wireway and electrical conduit | 7 | | 1.4.1 Servomotor wiring example | 9 | | 1.4.2 Bus cable wiring on LMV5x and AZL doors | | | 1.4.3 EARTH connection example | | | 2 AZL display/programming unit | | | 2.1 LMV5x program operating phases | | | 2.2 LMV5x program structure | | | 2.3 Burner ID number | 13 | | 2.4 Password | 14 | | 2.4.1 Access to service levels by password | 14 | | 2.4.2 Password Logout | | | 2.4.3 Changing password | | | 3 Thermostatic series and safety loop | | | 4 Actuators | | | 4.1 Addressing the actuators | 16 | | 4.2 Actuator doors configuration | 17 | | 4.3 Setting the actuator speed | 17 | | 5 Setting the load controller | 18 | | 6 Setting the probes and set-points | 19 | | 6.1 Configuration of a temperature probe at X60 door | 19 | | 6.2 Configuration of a pressure or a temperature probe type at X61 door | 20 | | 6.2.1 Configuration of a pressure or a temperature probe signal at X61 door | 20 | | 6.3 Configuration of the X62 door input signal | 20 | | 6.4 Setting the setpoint and the burner and the PID operative band | 21 | | 6.4.1 Set-point | 21 | | 6.4.2 SD_ModON e SD_Mod Off | 21 | | 6.4.3 PID control parameters | 22 | | 6.5 Setting functions "TL_ThreshOff" and "TL_SD_On" | 23 | | 7 VSD Standardization | | | 8 SPECIAL POSITIONS | 25 | | 8.1 Ignition position | 25 | | 8.2 Prepurge position | 25 | | 8.3 Home position | 25 | | 8.4 Postpurge position | 25 | | 9 ADJUSTING THE AIR/FUEL RATIO CURVES | 26 | | 9.1 Fuel burner settings - curve-points | 26 | | 9.2 Setting the load points output (burners with no FGR) | 27 | | 10 Configurations for burner with FGR | 30 | | 10.1 Recommendations | 30 | | 10.2 Address and activate the AUX3 servomotor. | 31 | | 10.3 Setting the special positions | 32 | | 10.4 Setting the load controller mode: see the previous chapter (regolazione senza FG | R)32 | | 10.5 FGR mode choice | 33 | | 10.6 Main parameter of the FGR function | 34 | | 10.7 Example of FGR factor and FGR Maps Factor on the burner regulation | 35 | | 11 Cold start thermal shock (CSTP) | 36 | | 12 BURNER MANUAL OPERATION | 38 | ## 1 WIRING RECOMMENDATIONS ## 1.1 Earthing #### 1.1.1 TN earthing system For the LMV5x-System it is preconditioned that a TN earthing system is used. In a TN earthing system, one of the points in the generator or transformer is connected with earth, usually the star point in a three-phase system. TN-S: PE and N are separate conductors that are connected together only near the power source. This arrangement is the current standard for most residential and industrial electric systems in North America and Europe. TN-C-S: Combined PEN conductor from transformer to building distribution point, but with separate PE and N conductors in fixed indoor wiring. LMV system must be connected to earth (PE). Δ Volt must be 0 V between N-PE. NOTE: PE = protection earth, it is not FE FE = functional earth ## 1.1.2 Protective Earth (PE) and Functional Earth (FE) Protective Earth (PE): Known as an equipment grounding conductor, avoids hazards by keeping the exposed conductive surfaces of a device at earth potential. To avoid possible voltage drop no current is allowed to flow in this conductor under normal circumstances, but fault currents will usually trip or blow the fuse or circuit breaker protecting the circuit. For example: burner body or the third wire in a 3 wire cable (N L $\!$ E) Functional Earth (FE): Is not intended for shock protection. It is used for a common reference potential. For example: cable shields. #### 1.2 .Frequency inverter / Variable Speed Drive (VSD) A VSD is one of the strongest EMC sources in a boiler house, so the following is recommended: **Note**: If the LMV5 is mounted in a cabinet, alternative to $(X73.6 \ / \ FE)$, also a connection with the PE- rail in the cabinet is possible Use only VSD with EMC- filter! Cable from VSD to the fan motor (Line voltage) Use a <u>complete separate and shielded cable</u> from the VSD to the fan motor! Connect the shield at VSD- <u>and</u> at the motor- side with PE. Details and further information see related VSD- documentation. Cable from LMV5 to VSD (Low voltage) Use a shielded cable from LMV5 to VSD. The shield of this cable has to be connected only at LMV5 side with X73.6 (FE), not at the VSD side: #### 1.3 Ignition electrodes and transformers The Ignition is also one of the strong EMC sources, so the following is recommended: - Keep the cable loop/length in the high voltage ignition circuit as short as possible. - Use special EMC-ignition cable - Avoid capacitive and inductive coupling to other signal paths. - Use separate wiring for the ignition high voltage cable, with max. possible distance to other cables and to the burner housing. - e.g.: use a electrical insulating conduit or distance parts (e.g. plastic material), see also Appendix "Example for wiring, earthing and shielding the LMV5-System" - Prefer a double pole ignition (see drawings below). - When using a double probe ignition, the cables should be run close together to ensure that the area of emissions is as small as possible. If a single pole ignition must be used, it is very important to have a low impedance at the mechanical connections (no insulation material, e.g. paint), because than you get a **good** current path from the ignition spark back to the ignition transformer, that results in **low** EMC-emissions: If you have high impedance at the mechanical connections, e.g. caused by paint, you get <u>bad</u> multiple current paths from the ignition spark back to the ignition transformer, that results in <u>high</u> EMC-emissions #### 1.3.1 Recommendations It is recommended to use a metal "mounting plate" for the LMV5 Base Unit and the TransformerAGG5.220. Use this plate to provide the Functional Earth (FE), see also /EARTH connection example The connection of the FE to the LMV5 has to be made by connecting the X52.4 terminal with FE! Follow exactly the shield and earth connection in the wiring diagram In some cases connecting the terminal X52.2 with FE results in an improved EMC- immunity of the LMV5. Make this connection and check the result, if there is no improvement, remove this connection. The FE is wired LMV- internal to the terminals for the shields (e.g. for Temperature- & Pressure- Sensors, ...), see "4. Shielding" To have a good connection of FE to the actuators SQM4/9, make certain that there is a proper electrical contact between the housing of the actuators and FE. If necessary connect the actuators SQM45/48/91 with a separate cable with the maximum possible diameter to FE, see also Appendix "Example for wiring, earthing and shielding the LMV5-System" #### 1.3.2 Shielding The LMV5-FE-terminals for the snields are LMV5 internally connected with X52.4, this terminal must be connect external with FE!, see also "3.3". The shield terminals for the CAN-Bus (X50.1, X51.1) are connected direct with X52.4, the other shield terminals are connected via capacitors to prevent DC- current. "LMV5 connection to FE and internal wiring" For the cables listed below use shielded cables: For the CAN-Bus cable use AGG5.631 and/or AGG5.641 together with AGG5.110 = CAN bus connection shield, for connecting the CAN bus to the basic unit. More details see page 36 "Installation Guide CC1J7550.1" - Cables for the VSD: - Line voltage cable VSD Fan motor - Low voltage cable LMV5 VSD (terminals X73) - Cables for Temperature or Pressure sensors, set points, load output at the LMV5 Base Unit: X60, X61, X62, X63 - Cables for the Fuel Counters at the LMV5 Bas Unit: X71, X72 - Cable for the Speed sensor: X70 - Cable for the QGO20 sensor at the PLL52: X81 - Cables for Temperature sensors at PLL52: X86, X87 (only if present) Cable for QRA7- Signal wires no. 3, 4 and 5, for cable length > 10m and < 100m; consider reinforced insulation to signal cable and connect it to PE at the cabinet PE- rail. ## 1.4 Wireway and electrical conduit The following cables are recommended for separate wiring; Complete separate from all other cables: - Cable for "VSD to Fan motor" Line voltage, see also "1. Frequency inverter / Variable Speed Drive (VSD)" - Cable for ignition high voltage, see also "2. Ignition" - Cable for the Flame sensors Together in cable duct 1 for Low voltage, e.g.: - Cable for CAN-Bus - Cable for VSD speed sensor, LMV5 X70 - Cable for VSD Release & Set point, LMV5 X73 - Cables for the Load controller: Temperature or Pressure sensor, set point, load output at the LMV5 X60, X61, X62, X63 Together in cable duct 2 for Line voltage, e.g.: - Cable for Ignition transformer - Cables for other Line voltage signals, e.g. Gas pressure switches, Air pressure switches, - Cable for Gas valves SKP/VGD The cables from the LMV5 to the SKP/VGD -Gas vales shall be connected at the LMV5 side with X9-01: L-Valve1, L-Valve2 and with X9-02, N, PE) and connected at the SKP side separate to each SKP. Example
of wiring, see next paragraph Wireway and electrical conduit NOTE: KEEP SEPARATE SIGNALS CABLES, OUTPUT CABLES, PHOTOCELL CABLE AS SHOWN IN THE BELOW PICTURE # 1.4.1 Servomotor wiring example # 1.4.2 Bus cable wiring on LMV5x and AZL doors. # 1.4.3 EARTH connection example # 2 AZL display/programming unit Users can set only the LMV parameters that can be accessed without password: (see "Adjusting the temperature set-point"). The Siemens AZL User Interface allows programming the Siemens LMV control box and monitoring the system data. The user interface is made of: display: it shows menus and parameters **ESC** key (previous level): it goes back to the previous level menu or exits the programming mode without changing data. Enter **SELECT** keys: they select a menu item and change the parameter values. AZL5x provides three sockets to interface with other devices: X70 socket for CAN bus connection: it provides power supply to display also. COM1 (X71) for connection to PC/laptop by RS232 connector CMO2 (X72) for connection to building automation system by RJ45 connector. Note: COM1 and COM2 ports do not work at the same time. Caution: when MODBUS in active, it is not possible to execute the backup via ACS450; if backup is executed the set-point will be missing and the burner will immediately turns off. #### 2.1 LMV5x program operating phases | Phase number | Description | Sequence | |--------------|--------------------------|---------------| | 10 | | Home run | | 12 | | Stand by | | 20,21 | Waiting to start realase | Startup | | 22 | Start fan on | Startup | | 24 | Driving to pre-purge | Startup | | 3034 | Pre purging | Startup | | 36 | Driving to ignition pos | Startup | | 38 | Ingnition pos | Startup | | 40,42,44 | Fuel release 1 | Startup | | 50,52 | Fuel release 2 | Startup | | 54 | Driving to low flame | Startup | | 60,62 | Shut-down low fire | Operation | | 70,72 | Driving to prepurge | Shutdown | | 7478 | Post-prepurging | Shutdown | | 79 | Test Air PressSwitch | Shutdown | | 8083 | | Valve proving | | 01 | | Safety Phase | | 00 | | Lockout | At burner startup, the AZL display shows, one by one, the various phases of the start-up program, until it reaches normal operation phase (Phase 60). LMV5x controller is factory preset. Changing are possible according to the password input By closing the "thermostat series" and once the start-up sequence is accomplished (from phase 12 to pahse34), the burner is driven to the factory-set ignition position (phase 38). The burner remains in that position because this is the only one work point in memory. The fuel/air ratio curve must be set, until the maximum load limit (100% output). During the setting, the actuators move according to the curve points. While the actuators move, always check the combustion analysis, point by point, and the flame stability. The fuel/air curve points must be set during the commissioning, by a qualified operator. CAUTION! The procedure requires a password: qualified personnel only must check all changes to combustion parameters by means of the combustion analyzer. Remember that the password will elapse if no key is pressed for a certain period. The unit will ask for the password again ATTENTION! During the cold start phase, it is necessary to set the burner load. Too low output values could damage the combustion head, blast tube, oil nozzle (if present). The minimum working point must be set by qualified personal. CAUTION!: check the combustion analysis, point by point, and the flame stability. ATTENTION! Set the real load output percentage at the corresponding curve-point on AZL during the burner regulation. ## 2.2 LMV5x program structure #### NOTE: - (1) only for LMV52.400, LMV51.300 without temperature compensation - (2) only for LMV5.200 (controlling the oxygen level in the exhaust gas flue) and LMV52.400 (monitoring the oxygen level in the exhaust gas flue, a lock out occur if a limit value is overcoming) - (3) Only for LMV51.300 (in this case VSD cannot be used), LMV52.xxx ATTENTION: LMV51.300: HAS ONE AUX. IT CAN BE SET FOR FGR OR VSD OR "VSD AND FGR" TOGETHER ATTENTION: IT IS RECOMMENDED TO NOT USE O2 MONITORING IF FGR IS INSTALLED AND ACTIVE ## 2.3 Burner ID number The burner ID number corresponds to the **burner serial number**. NOTE: in case of call to the Service Center, always tell the burner type and serial number (see burner data plate). NOTE: burner ID number must be set. Following the below route access to the programming levels of the menu: | 1st level | 2nd level | 3rd level | 4th level | 5th level | 6th level | Description | |-----------------|-----------|-----------|-----------|-----------|-----------|--------------------------| | OperationalStat | | | | | | | | (<u>•</u> | BurnerID | | | | | Identification of burner | the product ID number is an OEM parameter, entered by the burner manufacturer and it can not be changed; it consist of minimum 4 and maximum 15 characters. #### 2.4 Password #### 2.4.1 Access to service levels by password Depending on password (service or OEM), different parameters are visible. "Service" parameters, as per the actuator curves and the set-point values, are password protected. The operator must logon using the "9876" password. "User" level doesn't need a password. If a password shall be entered, line Enter password is selected by means of decrementing (pointer points to the first character of that line) and then finally selected by pressing Enter. Then, the pointer jumps to the first position of the password entry line. Now, through incrementing or decrementing, a character (digit or letter) can be selected. A character is confirmed by pressing Enter. If a wrong entry has been made, the last character can be edited again by pressing Esc. The other password positions can be selected, edited and entered in a similar way. Hence, when making an entry, only 1 character is visible. When the last character of the password is reached, the entry is to be confirmed by pressing Enter. Display before the first password character is entered: The example displays when entering the third password character: | Enter Password | | | | | | | | | |----------------|---|---|---|---|---|---|---|---| | : | * | * | s | * | * | * | * | * | If the check of the password entered is positive, the change to the next menu level takes place. Otherwise, the display returns to the main menu level. To go back to the main menu, press "Esc" until the first level menu is reached, then press the "right arrow" till the first item is reached, then press "Enter" twice. #### 2.4.2 Password Logout To avoid customer changes on parameter settings and consequently changes in regulation, the password must be logged out. The "password logout" functions on the first level menu: press to choose "PW Logout" then press "Enter". Note: if no key is pressed within a settable period, the password is deactivated automatically. Note: if a power supply drop occurs to the unit, the password will be automatically deactivated. ## 2.4.3 Changing password. Following the below route access to the programming levels of the menu by means the Esc | 1st level | 2nd level | 3rd level | 4th level | 5th level | 6th level | Description | |-----------|-----------|-----------------|-----------|-----------|-----------|--------------------| | Updating | | | | | | | | (| Password | | | | | To change password | | | | ServicePassword | | | | For service only | | | <u></u> | OEM Password | | | | For OEM only | # 3 Thermostatic series and safety loop The burner shuts down properly when the thermostatic series (X5-03.1 and X5-03.4 - terminals 3 and 4 of the burner terminal block) opens. In this way, before shut-down, the burner drives to the minimum load, then the fuel valve will close. The post-purging phase will be performed if set. By re-closing the thermostatic series, the burner will start-up again. In the plant other safety devices are provided (levels, pressure switches, thermostats, air damper). All these contacts are connected in series to the 318-319 terminals of the burner supply terminal block. When the safety loop closes, the burner is ready to restart. The actuators move to "home position" (standby position), and if terminals 3-4 are closed the start-up cycle resumes; otherwise the burner enters the standby phase. In the plant the safety thermostat is provided as well. If this thermostat switches (terminals X3-04.1 e X3-04.2 corresponding to terminals 318 and 319 of the burner supply terminal block - see below), the system will lead to an immediate burner lockout. In case of burner designed with automatic pull-out system from the generator, the burner flange end switch is connected to terminalsX3-03.1 e X3-03.2. If the contact open, the burner automatically shuts down. **NOTE:** When the safety loop opens, the burner will immediately turns off, skipping the low flame stage. It's important to distinguish between "safety loop" and "thermostatic series" The maximum number of emergency shut-downs is 16. When this number is reached a lockout will occur AZL will show the message: "Open safety loop". Following the below route access to the programming levels of the menu: | 1st level | 2nd level | 3rd level | 4th level | 5th level | 6th level | Description | |------------------|---------------|---------------|----------------|------------|-----------|--| | Params & Display | | | | | | Menu level for making the parameter settings | | (| BurnerControl | | | | | Setting the burner control parameters | | | (1) | Configuration | | | | | | | | | RepetitCounter | | | It sets the maximum number of possible repetitions | | | | | | SafetyLoop | 116 | Default is set on 16 | ## 4 Actuators ## 4.1 Addressing the actuators The addressing assigns to each actuator its proper function. The addressing is factory set by the burner manufacturer. If an actuator must be replaced, it is necessary to address it,
otherwise the system will not work. The parameter that sets the actuator function is protected by the Service level password. Remember to check that the jumper "Bus termination" of the last actuator on the CAN bus is set to "On", before starting addressing. Following the below route access to the programming levels of the menu by means the Esc | 1st level | 2nd level | 3rd level | 4th level | 5th level | 6th level | Description | |------------------|-----------|------------|--|-----------|-----------|------------------------------------| | Params & Display | | | | | | | | | Actuators | | | | | | | | <u></u> | Addressing | | | | Addressing unad- dressed actuators | | | | <u></u> | AirActuator GasActuat (Oil) OilActuator AuxActuator 1 AuxActuator 2 AuxActuator 3 (**) | | | (**) used with FGR | To address an actuator, choose the corresponding actuator and follow the instructions on display: When the actuator green LED flashes, it means that one of the following function is set according to the number of blinks: | Blinks | Actuator function | | |----------|--------------------------------|--| | 1 blink | air damper actuator | | | 2 blinks | gas butterfly valve actuator | | | 3 blinks | oil pressure governor actuator | | | 4 blinks | auxiliary actuator AUX1 | | | 5 blinks | auxiliary actuator AUX2 | | | 6 blinks | auxiliary actuator AUX3 | | If the burner is equipped with FGR, AUX3 must be used CAUTION: it is recommended not to adjust the actuators. Anyway, never press the actuator red button, otherwise the fundamental parameters, necessary for the burner operation, will be cancelled. The burner will therefore continuously lock out In case P1 was pressed for a long time, it will be necessary to perform a new addressing of the actuator. ATTENTION: when the actuator LV green LED is always lit, it means that the actuator has not been addressed yet or it has been reset and needs to be addressed again. # 4.2 Actuator doors configuration After the adressing of the actuators, it is necessary to activate and to configure the operation way for each servomotor. ATTENTION: Activate only the actuators that are really present, otherwise an error will occur. | 1st level | 2nd level | 3rd level | 4th level | Possible choices | |----------------|--------------|----------------|--------------|---| | Params&Display | | | | | | | | | | | | | RatioControl | | | | | | | Gas/OliSetting | | | | | | <u></u> | AuxActuator | Deactivated | | | | | AirActuator | Activated | | | | | AuxActuator1 | Air influencing (only with LMV52x if O2 control is present) | | | | | AuxActuator2 | | | | | | AuxActuator3 | (values available Only with LMV51.300) | | | | | VSD | VSD = VSD only | | | | | GasActuator | AUX3 = FGR only, without temperature compensation | | | | | | VSD+AUX3 = VSD and FGR | | | | | | | LMV 51.300 has the possibility to operate with VGD+FGR without temperature compensation # 4.3 Setting the actuator speed LMV sees VSD as an actuator, that's why the speed ramp up and the stop times must not be higher than the actuator stroke time. If it is necessary to increase the VSD times, change the actuator stroke time also, according to the next procedure. By following the next table, set both parameter "OperatRampMod" and "TimeNoFlame" to set the ramp up/stop times for the VSD and the actuator opening speed (from 0° to 90°). Following the below route access to the programming levels of the menu by means the Esc | 1st level | 2nd level | 3rd level | 4th level | 5th level | 6th level | Description | |----------------|--------------|-----------|---------------|-----------|-----------|---| | Params&Display | | | | | | Menu level for making the parameter settings | | | RatioControl | | | | | Parameter settings for fuel/ air ratio control | | | | Times | | | | | | | | | OperatRampMod | Service | 40 s | Operating ramp modulating is the maximum speed of the actuators during operation (phase 60 ÷ 62). | | | | | | | | A setting of 30 seconds generates a maximum speed of 90° in 30 seconds (3°/s). | | | | | | | | The LMV5 calculates an individual speed for each actuator, so that all actuators reach their target positions at the same time. | | | | | | | | Range 1060s | | | | | TimeNo- Flame | Service | 40 s | Drive ramp is the speed of the actuators when traveling to the home, prepurge, ignition, and postpurge positions. | | | | | | | | A setting of 10 seconds generates a maximum speed of 90° in 10 seconds (9°/s). | | | | | | | | Range 10120s | ATTENTION: It is suggested to set the ramp up and stop time to a value about 35% lower then the slowest actuator. # 5 Setting the load controller IntLC....must be set together with a modulating probe (temperature or pressure). The probe and its signal must be configured. Doors allowed are X60 for temperature probe and X61 for pressure probes or analogue output probes. ExtLC... must be set together with an external input signal of modulation (analogue or bus) coming from an external output modulator. The input must be configured. Doors allowed are X62 for the type of signal choice. Following the below route access to the programming levels of the menu | 1st level | 2nd level | 3rd level | 4th level | 5th level | 6th level | Description | |------------------|----------------|---------------|-------------|--|-----------|---| | Params & Display | | | | | | Menu level for making the parameter settings | | <u></u> | LoadController | | | | | Settings for the internal load controller | | | <u></u> | Configuration | | | | General con- figuration of the load con troller | | | | <u></u> | LC_OptgMode | | | Operating mode with load control- ler | | | | | | ExtLC X5-03 Int LC Int LC Bus Int LC X62 Ext LC X62 Ext LC Bus | | See below. | ExtLC X5-03 = three-point external controller (X5-03 terminals) Int LC = internal controller (LMV5x) (it switches between 2 set points, W1,W2 set thought AZL. the switch from W1 and W2 is realized opening/closing the LMV5x... terminals X62.1, X62.2). Int LC Bus = internal controller and set point setting via bus connection Int LC X62 = internal controller (LMV), but set point is externally controlled by means of a voltage/current signal on X62 terminals Ext LC X62 = external controller, the burner output is controlled by means of a voltage/current signal on X62 terminals Ext LC Bus = external controller, the burner output is controlled via bus ATTENTION: in case of FGR, it is not possible to connect a modulating temperature probe at the X60 door of the LMX5... See the proper chapter for configuration. # 6 Setting the probes and set-points If the LMV5x internal load controlled is used, a temperature or pressure probe can be connected to the terminal X60 or X61. In this case, set the type of probe and its operating range. # 6.1 Configuration of a temperature probe at X60 door ATTENTION: If the external load controller is set do not connected to terminals X60 or X61. ATTENTION: If the burner is equipped with FGR with temperature compensation a Pt1000 must be set. ATTENTION: Depending on the sensor, the value is visualized as °C or bar. Following the below route access to the programming levels of the menu by means the Esc | 2nd level | 3rd level | 4th level | 5th level | 6th level | Description | |----------------|----------------|-------------------------------|--|---|---| | | | | | | Menu level for making the parameter set- tings | | LoadController | | | | | Settings for the internal load controller | | | Configuration | | | | General configuration of the load controller | | | • | Sensor Select | | | Select actual value input | | | | | Pt100
Ni1000
Temp sensor
Press sensor
Pt100Pt1000
Pt100Ni1000 | | See the table below for the meaning of the choice. | | | LoadController | LoadController Configuration | LoadController Configuration Sensor Select | LoadController Configuration Sensor Select Pt100 Ni1000 Temp sensor Press sensor Pt100Pt1000 | LoadController Configuration Sensor Select Pt100 Ni1000 Temp sensor Press sensor Pt100Pt1000 Pt100Ni1000 | ## Possible settings are: | Probe | Description | | | | | | | |-----------|--|--|--|--|--|--|--| | Pt100 | emperature sensor Pt100 at the input X60, internal temperature limiter function = activated | | | | | | | | Pt1000 | Temperature sensor Pt1000 at the input X60, internal temperature limiter function = activated | | | | | | | | Ni1000 | emperature sensor LG-Ni1000 at the input X60, internal temperature function = activated | | | | | | | | TempSens | Temperature sensor at the input X61, internal temperature switch function = deactivated | | | | | | | | PressSens | Pressure sensor at the input X61, internal temperature switch function = deactivated | | | | | | | | | Temperature sensor Pt100 at input X60 for temperature controller and temperature limiter function and temperature sensor Pt1000 at input X60 additionally for temperature limiter function | | | | | | | | | Temperature sensor Pt100 at input X60 for temperature controller and temperature limiter function and temperature sensor LG-Ni at input X60 additionally for temperature limiter function. | | | | | | | | No Sensor | No actual
value sensor (e.g. in the case of external predefined loads and without internal temperature limiter). | | | | | | | ATTENTION: If a boiler second probe is to be connected to terminals (1000 Ohm only), internal functions TL_ThreshOff and DiffIntervTL_SD_On are activated automatically (see paragraph <u>SETTING FUNCTIONS "TL_ThreshOff" AND "TL_SD_On"</u>). # 6.2 Configuration of a pressure or a temperature probe type at X61 door ATTENTION: If the external load controller is set do not connected to terminals X60 or X61. If a modulation probe is connected to the X61 terminal, proceeding as follows: | 1st level | 2nd level | 3rd level | 4th level | 5th level | 6th level | Description | |------------------|----------------|---------------|------------------|------------------------------------|-----------|---| | Params & Display | | | | | | Menu level for making the parameter set-
tings | | | LoadController | | | | | Settings for the internal load controller | | | • | Configuration | | | | General configuration of the load controller | | | | | Ext Inp X61 U/ I | | | Configuration of external input X61 | | | | | | 420 mA
210 V
010 V
020 mA | | Set the proper value according to the probe output. | # 6.2.1 Configuration of a pressure or a temperature probe signal at X61 door Once the pressure sensor signal type is set, the sensor range must be set as well, proceeding as follows: | 1st level | 2nd level | 3rd level | 4th level | 5th level | 6th level | Description | |----------------|----------------|---------------|------------------|-----------|-----------|---| | Params&Display | | | | | | Menu level for making the parameter settings | | | LoadController | | | | | Settings for the internal load controller | | | (<u>.</u> | Configuration | | | | General configuration of the load controller | | | | <u></u> | MRange PressSens | | | End of pressure measuring range for input X61 | | | | | <u></u> | 099.9 bar | 099.9 bar | Set the probe value | | | | | | 02000 °C | 02000 °C | | **Example:** if a max 10bar Siemens sensor is used, the voltage output signal will be 0 V at 0 bar, while the 10 V signal will correspond to its maximum pressure 10 bar. If the sensor is replaced with a max 16bar one, the 0 V output signal will correspond to 0 bar, while the 10 V output signal will correspond to 16bar pressure: the parameter "MRange Press-Sens" has to be set at 16bar. # 6.3 Configuration of the X62 door input signal Following the below route access to the programming levels of the menu by means the Esc | 1st level | 2nd level | 3rd level | 4th level | 5th level | 6th level | Description | |------------------|----------------|---------------|-----------------|-----------|-----------|--| | Params & Display | | | | | | Menu level for making the parameter settings | | • | LoadController | | | | | Settings for the internal load controller | | | | Configuration | | | | General configuration of the load controller | | | | | Ext Inp X62 U/I | | | Configuration of external input X62: input signal on X62 can change setpoint or control the load | | | | | | 420 mA | | According to the external modulator output. | | | | | | 210 V | | | | | | | | 010 V | | | | | | | | 020 mA | | | If a boiler second probe is to be connected to terminals (1000 Ohm only), internal functions TL_ThreshOff and DiffIntervTL_SD_On are activated automatically (see paragraph <u>SETTING FUNCTIONS "TL_ThreshOff" AND "TL_SD_On"</u>). # 6.4 Setting the setpoint and the burner and the PID operative band. ## 6.4.1 Set-point To set the temperature set-point value, that is the generator operating temperature; proceed as follows. | 1st level | 2nd level | 3rd level | 4th level | 5th level | 6th level | Description | |------------------|----------------|-----------------|-----------|-----------|-----------|--| | Params & Display | | | | | | Menu level for making the parameter settings | | | LoadController | | | | | General configuration of the load controller | | | (| ControllerParam | | | | Controller parameters | It appears the below screen: | SetPointW1 | Curr: it shows the current set-point; use the arrows keys to change it. New: it is the new set value. Enter to confirm, otherwise exit without changing by | |-----------------------|---| | Curr: 90°
New: 90° | pressing ESC. Press ESC one more time to exit the set-point programming mode. | After setting the set-point it is necessary t oset the operation range of the burner. See paragraph SD ModON e ## 6.4.2 SD_ModON e SD_Mod Off Once the temperature set-point W1 is stored, set the burner switch-on (SDon) and the switch-off (SDoff) point: To set these values, choose the item SD_ModOn (SDOn), by scrolling down the "Load controller" menu with the arrow keys and press ENTER: | 1st level | 2nd level | 3rd level | 4th level | 5th level | 6th level | Description | |------------------|-----------|-----------|-----------|---|---------------------|-------------| | Params & Display | | | | Menu level for making the | Params &
Display | | | | SD:ModOn | | | General
configuration of
the load | | SD:ModOn | | | SD:ModOff | | | General
configuration of | | SD:ModOff | the display will show: | SD_ModOn | SD_ModOff | |------------|-------------| | Curr: 1.0% | Curr: 10.0% | | New: 1.0% | New: 10.0% | The **SD_ModOn** default value for this parameter is 1% that is, the burner will light again at a temperature 1% lower than the set-point. Change value, if needed, by means of the arrow keys; press ENTER to confirm and the press ESC to exit. Press only ESC to exit without changing. Now choose SD_ModOff always scrolling down the Load Controller menu, by means of the arrow keys, and press ENTER. The default value for this parameter is10% that is, the burner will turn off at a temperature 1% higher than the set-point. Press the ENTER to confirm, the press ESC to exit. Otherwise press ESC to exit without changing data. Press the ESC to exit ## 6.4.3 PID control parameters The controller's memory contains 5 standard parameter sets. If required, 1 of these 5 PID triple values can be copied to the storage locations for the actual values so that it becomes active. PID standard values for the following applications: | 1st level | 2nd level | 3rd level | 4th level | 5th level | 6th level | Description | |------------------|----------------|-----------------|-----------------|---------------|--|---| | Params & Display | | | | | | Menu level for making the parameter settings | | • | LoadController | | | | | Settings for the internal load controller | | | | ControllerParam | | | | Settings for internal load controller | | | | (1) | ContrlParamList | | | Settings of controller parameter for internal load controller | | | | | | StandardParam | Adaption
very fast
fast
normal
slow
very slow | | It is possible to manually set the PID parameters to any value in the setting range shown below, to activate a PID regulation from the predefined standard values described below (and edit it further if required), or to use the adaption function (self-setting function) instead of making the settings manually. The LMV5... then acquires the PID parameters itself. See the LMV5x Siemens manual for instructions. Generally the choice of the proper pre-set PID that LMV5x suggest (very fast / fast / normal / slow / very slow) are enough for a proper operation. | Adaption | The values acquired by the LMV5 adaption function are | | | | | | |--------------------------------------|---|--------|--------|--|--|--| | | Хр [%] | Tn [s] | Tv [s] | | | | | Very fast
(e.g. for small boiler) | 42,5 | 68 | 12 | | | | | Fast | 14,5 | 77 | 14 | | | | | Normal | 6,4 | 136 | 24 | | | | | Slow | 4,7 | 250 | 44 | | | | | Very slow
(e.g. for large boiler) | 3,4 | 273 | 48 | | | | Table shows the pre set parameter of the PID regulator according to the internal modulator reaction choice. The parameter $\ensuremath{\mathsf{Xp}}$ is the proportional band in % of the set-point # 6.5 Setting functions "TL_ThreshOff" and "TL_SD_On" These functions enable the settable threshold for the immediate shutdown, if value set on TL_ThreshOff is exceeded. The automatic restart is performed for values lower than the one set on TL_SD_On. On display, values detected by temperature/pressure probe are shown at the same time. TL_ThreshOff turns the burner off if temperature exceeds the set value. Gas/Oil valves are suddenly closed. **TL_SD_On** automatically restart the burner if the temperature is lower than the set value. SD_ModOff automatically turns the burner to low flame and then shut down the burner if temperature exceeds the set value. **SD_ModOn** automatically restart the burner if the temperature is lower than the set value. P-Part (Xp) proportional band of modulation. Note: this function is available if a Pt100 Ni1000 or Pt 1000 temperature sensor is connected to X60.3 and X60.4 terminals. **ATTENTION**: basically, these parameters provide a function similar to the safety thermostat one, but can not replace it. The boiler must **always** operate with its safety thermostat connected properly. **NOTE**: the parameter TL_ThreshOff for the immediate shutdown, must always be set to a value higher than the SD_ModOff threshold for the normal shutdown. TL_SD_On must be set at a higher temperature than SD_ModOn. Following the
below route access to the programming levels of the menu by means the Esc | 1st level | 2nd level | 3rd level | 4th level | Range | Default | Description | |------------------|----------------|-------------|--------------|------------------------|---------|---| | Params & Display | | | | | | Menu level for making the
parameter set- tings | | | LoadController | | | | | Settings for the internal load controller | | | • | TempLimiter | | | | Settings for the temperature limiter function | | | | • | TL_ThreshOff | 02000 °C | 95°C | Temperature limiter OFF threshold, in °C | | | | (1) | | -500%
TL_Thresh_Off | - 5% | Temperature limiter switching differential ON | # 7 VSD Standardization Motor standardization (speed acquisition) allows the LMV unit to control the motor rounds at the maximum frequency signal coming from the VSD. A temporary standardization is factory set only for test purpose. The definite standardization must be performed on site by the Service Center (only if the fan is supplied), before the plant test. ATTENTION: To perform standardization, the burner must be in stand-by mode, not it lockout stage. The Safety loop must be closed (X3-04). Following the below route access to the programming levels of the menu by means the Esc | 1st level | 2nd level | 3rd level | 4th level | 5th level | Range | Description | |------------------|------------|---------------|-----------|-----------------|--------------------------|--| | Params & Display | | | | | | Menu level for making the parameter settings | | • | VSD Module | | | | | Settings for the VSD module | | | • | Configuration | | | | | | | | • | Speed | | | | | | | | <u></u> | Standardization | Deactivated
Activated | Standardization process for fan speed | By activating the standardization, without starting the burner up, the air actuator drives to ites maximum opening. Then the fan motor stars and the VSD drives the motor to its maximum speed. The speed sensor, mounted on the motor, detects the rpm value. LMV stores the data and the motor stops. | \triangle | ATTENTION: do not enter manually the rpm value of the motor data plate on parameter "StandardizedSp". | |-------------|---| | Λ | ATTENTION: the power cable that connects VSD to motor must be screened. | # 8 SPECIAL POSITIONS # 8.1 Ignition position The ignition point is independent from the other curve points of the air/fuel ratio curve. As far as dual fuel burners, the ignition point set for the gas operation does not depend on the one set for the oil operation. LMV5x allow two different ignition position for gas mode and oil mode. The burner is provided with a factory-set ignition point, to make easier the first ignition procedure by the Service Centre. The air actuator at the ignition point, is factory set at a 6°/7° opening, while the gas actuator is set at 12°/15°. In case of burner provided with VSD, it is suggested to set ignition at 100% VSD frequency. Following the below route access to the programming levels of the menu by means the Esc | 1st level | 2nd level | 3rd level | 4th level | 5th level | 6th level | Description | |------------------|--------------|----------------------------|-------------------|--------------|------------------|--| | Params & Display | | | | | | Menu level for making the para- meter set- tings | | | RatioControl | | | | | | | | | GasSettings
OilSettings | | | | Choose according to the fired fuel. | | | | • | Special Positions | | | | | | | | | IgnitionPos | | | | | | | (| HomePos | | | | | | | (| PrepurgePos | | | | | | | (| PostpurgePos | | | | | | | | | IgnitionPosGas | Set the proper position | | | | | | | IgnitionPosAir | Set the proper position | | | | | | | IgnitionPosAux 1 | Set the proper position | | | | | | | IgnitionPosAux 2 | Set the proper position | | | | | | (| IgnitionPosAux 3 | Set the proper position | | | | | | | IgnitionPosVSD | Set the proper position | # 8.2 Prepurge position Following the same route up to the 4th level, choose the pre-purge position of the servomotors ## 8.3 Home position Following the same route up to the 4th level, choose the home position of the servomotors ## 8.4 Postpurge position Following the same route up to the 4th level, choose the postpurge position of the servomotors # 9 ADJUSTING THE AIR/FUEL RATIO CURVES ATTENTION: when burners are provided with VSD, before setting the air/fuel ratio curves, the Standardization of the motor speed must be performed (see chapter "Standardization"). | 1st level | 2nd level | 3rd level | 4th level | 5th level | 6th level | Description | |------------------|--------------|----------------------------|-------------|-----------|-----------|---| | Params & Display | | | | | | Menu level for making the
parameter settings | | | RatioControl | | | | | Parameter settings for fuel/
air ratio control | | | | GasSettings
OilSettings | | | | Parameter settings for firing on gas or on oil | | | | <u></u> | CurveParams | | | | # 9.1 Fuel burner settings - curve-points Two curve points are factory set (default settings) corresponding to a hypothetic low flame stage **Note:** points P1 and P2, are temporally mentioned 10% and 100% load, independently from the actual load. The operator can name the load on each point, without respecting the actual load value in that point. LMV5x will order those points automatically according to the load values set by the operator. With this setting, by closing the thermostat series, the burner drives to minimum load position **P1**, after ignition. Then it drives to position **P2** without increasing the output, as both the points are set with actuators minimum opening. ATTENTION: For burners with FGR and LMV52.400, the parameter is set to "deactivated". # 9.2 Setting the load points output (burners with no FGR) Following the below route access to the programming levels of the menu | 1st level | 2nd level | 3rd level | 4th level | 5th level | 6th level | Description | |------------------|--------------|----------------------------|-------------|-----------|-----------|--| | Params & Display | | | | | | | | | RatioControl | | | | | Parameter settings for fuel/
air ratio control | | | (| GasSettings
GasSettings | | | | Parameter settings for firing on Gas or on Oil | | | | (| CurveParams | | | At this level, the air/fuel ratio during operation is to be set. | Now it is possible to change Point2 with the next procedure Checking continuously the air excess means of the combustion analyzer, increasing by few degrees* the air damper opening and the VSD if provided. Then increase by few degrees* the gas butterfly valve (or the fuel actuator). Go on step by step, until the butterfly valve complete opening is reached (actuator at 90° - see diagram). The target is to reach the gas butterfly valve maximum with a sufficient excess of air. While progressively increasing the actuator positions, besides increasing the air quantity the fuel rate must be controlled by means of the valve pressure governor, in order to not exceed the requested maximum flow rate Once the gas butterfly valve maximum opening is reached, adjust the fuel **rate** only acting on the gas valve pressure governor (or on the oil pressure governor in case of oil). ATTENTION: as for "increasing by few degrees" it means that the increasing must be performed in order to avoid great excess of air or defect of air. Therefore the increasing operation must be performed always checking the flue gas analysis by means of the combustion analyzer. It is recommended to make increasing while maintaining O2 % between max 7,5% and min 3%. It is recommended to save new points increasing the burner output at step odf10÷20% load. Measuring the burner output at the flow meter. In this way, if for any reason, you must interrupt the commissioning and restart it later, you would help yourself. Checking parameters by means of the combustion analyzer go on increasing the Air (and/or VSD if provided) and the Fuel actuators. At the end the last point will be set. Act on the pressure governor to adjust the fuel pressure at the proper value in order to reach the real 100% load of the generator/boiler. Act only on the AIR or VSD actuators, to adjust the combustion. An example of final point will be as per the display aside, imaging to set 10 curve-points. ATTENTION: Set the % output load values, for every curve-point ATTENTION: Adjust actuators position by small changes, always checking combustion parameters. Caution! For safety reasons, once the maximum load point P2 is set, never go down to the minimum load point P1, without having set the other intermediate points before (see next paragraph). Caution! In case it is necessary to immediately shut the burner down while working at high flame and the maximum load point is not already set observing the combustion parameters, decrease gas by means of the pressure governor as to drive the burner to a sufficient excess of air, then shut the burner down by the main switch. At next start-up, start again with point P2 to the minimum load (factory-setting - see previous paragraph) and go on setting the curve points. ATTENTION: When the maximum load is reached (100%), check again the curve-points. The pressure at the governor has changed and therefore also the gas flow rate to the other points. So, it is necessary to check the adjustment of the points already set. ATTENTION: for proper operation, it is necessary that the curve of each actuator does not reverse its slope. ATTENTION: When % load value is
changed by user, LMV recalculates all the curve-points according the new load value. It may happen that the point you are adjusting, once saved, is moved to another position. # 10 Configurations for burner with FGR #### 10.1 Recommendations #### Note Reduction of maximum burner output Use of the flue gas recirculation (FGR) function or the flue gas mass introduced to the supply air duct might lower the burner's maximum output. This means that the maximum amount of combustion air that can be introduced will be reduced. It is recommended to consider a proper air excess during the regulation of the burner in order to have to the right O2 content in the smoke, after the flue gas recirculation. Hence, the amount of fuel for high-fire operation must be reduced to ensure correct combustion values. #### Caution! Temperature-compensated flue gas recirculation (FGR) can be correctly set only when selecting with *DriveLowfire* in operation! A change in the curve point without the corresponding flue gas recirculation temperature (e.g. without driving in operation or in standby) results in an incorrect pairing of the values Flue gas recirculation position and Flue gas recirculation temperature. This can lead to excessive amounts of recirculated flue gas, which might cause the flame to lift: Stability limit of flame. #### Caution A subsequent change of the curve point without an associated flue gas recirculation (FGR) temperature (e.g. without DriveLowfire in operation or standby) leads to an incorrect pairing of flue gas recirculation-position and flue gas recirculation-temperature. This can lead to excessive amounts of recirculated flue gas, which might cause the flame to lift: Stability limit of flame. #### Note! Flue gas recirculation (FGR) in combination with O2 trim control Recommendation: Do not use flue gas recirculation (FGR) in combination with O2 trim control. This has no impact on the use of the O2 alarm. The physical effects are the following: 1. Pressures have reciprocal effects. 2. The reduction of O2 can lead to a significant increase of NOx levels. As a result of these reciprocal effects, it is difficult, if not impossible, to adjust fuel-air ratio control, O2 trim control, and the flue gas recirculation (FGR) function. Even if an adjustment was possible, the flame may become instable during operation, or the required NOx levels might not be reached. #### Note! The full scope of setting *TCautoDeact* is possible only when the flue gas temperature is acquired via the load controller input (X60...). When the temperature is acquired via the PLL52... input (X86...) and the O2 trim controller / alarm is active (not CtrlAutoDeac), flue gas recirculation (FGR) mode temperature-compensated cannot be used (would lead to error C:F6 D:2). When operating mode O2 Control is deactivated (man deact), operating mode TCautoDeact can be used if the flue gas temperature is acquired via PLL52... (X86...). ## Attention! If at an dual-fuel burner the FGR function is used for only one fuel (e.g. gas operation with FGR and oil operation without FGR) pay attention to the following: When the fuel selection is switched over to the fuel without FGR it must be assured that the FGR actuator is closed and is supervised kept in the closed position. This is accomplished by making the following settings for the fuel without FGR: - Activation of the AUX3 actuator - Parameterization of the positions Home, Prepurge, Ignition and Postpurge to closed - Parameterization of all AUX3 actuator positions at all curve points to closed - Parameterization of the FGR operating mode to Aux3onCurve Before to activate the FGR system, it is mandatory to complete the air/fuel ratio curve for each point, up to the maximum burned output. Check the previous chapter for instructions. WARNING: Activating or increasing the FGR butterfly valve opening, it is mandatory to check the combustion by means a properly and calibrated smoke analyzer. # 10.2 Address and activate the AUX3 servomotor. Usually these operations are already set in the manufacturer factory. They would be necessary in same cases as: the substitution of the servomotor, in case the FGR mode were not activated yet or the LMV5x were be supplied loose... WARNING: for LMV52.400 device, in case of FGR servomotor addressing: the only possible choice is AuxActuator3. Don't set the FGR servomotor for a different one. | 1st level | 2nd level | 3rd level | 4th level | 5th level | 6th level | Description | |------------------|-----------|------------|---|-----------|---------------|--| | Params & Display | | | | | | | | (| Actuators | | | | | Parameter settings for fuel/ air ratio control | | | (| Addressing | | | | Parameter settings for firing on Gas or on Oil | | | | | AirActuator GasActuat OilActuat AuxActuator AuxActuator 2 AuxActuator 3 | | AuxActuator 3 | AuxActuator 3 MUST be chosen | After the addressing, activate the FGR servomotor. | 1st level | 2nd level | 3rd level | 4th level | 5th level | 6th level | Description | |------------------|--------------|----------------------------|----------------------------|---|--|--| | Params & Display | | | | | | | | (| RatioControl | | | | | Parameter settings for fuel/ air ratio control | | | <u></u> | GasSettings
OilSettings | | | | Parameter settings for firing on Gas or on Oil | | | | | AuxActuator | deactivated
damper act
VSD active
AUX3
VSD+Aux3 | Deactivated for LMV52.xxx AUX3 for LMV51.300 | Deactivated for LMV52.xxx
AUX3 for LMV51.300 | | | | <u></u> | AirActuator | deactivated
activated
air influen | activated | | | | | | AuxActuator 1 | | | | | | | | AuxActuator 2 | | | | | | | (| AuxActuator 3 | | Activated for LMV52.xxx | | | | | <u></u> | VSD | | | | | | | (| GasActuator
OilActuator | | Activated
Activated | Choice according to the Operation mode gas setting or oil setting. | # 10.3 Setting the special positions | 1st level | 2nd level | 3rd level | 4th level | 5th level | 6th level | Description | |-----------------|--------------|----------------------------|-----------------|-----------|-----------|-------------| | Param & Display | | | | | | | | (| RatioControl | | | | | | | | (| GasSettings
OilSettings | | | | | | | | (| SpecialPosition | | | | Suggested positions are below. They can be modify during the commissioning according to right needs. ## Special Position: AUX3 POS Home position Prepurge position Ignition position Postpurge position Postpurge position O° (Closed) Poostpurge position 90° (Open) # 10.4 Setting the load controller mode: see the previous chapter (regolazione senza FGR) WARNING: If one of the intLC (internal Load Controller) option must be choice, a temperature sensor cannot be connected to the terminal X60. A temperature sensor with analogue output or a converter Ohm → mA or V must be used. They must be connected to the terminals X61. WARNING: If one of the extLC (External Load Controller) options must be used, set "no sensor", "Temperature sensor" or "Pressure Sensor" on the choice for the modulation probe. WARNING: The X61 door must be configured in according to the used sensor or signal. # 10.5 FGR mode choice | 1st level | 2nd level | 3rd level | 4th level | 5th level | 6th level | Description | |-----------------|--------------------|-----------|--|-----------|-----------|---| | Param & Display | | | | | | | | | Flue Gas
Recirc | | | | | | | | (1) | | AUX3onCurve time temperature temp. contr. TCautoDeact deactMinpos auto deact | | | According to the preference and instruction in the table below. | Description of the FGR mode. | FGR-Mode | Description | LMV50
LMV51.3
LMV52.2 | LMV52.4 | |-------------|---|-----------------------------|---------| | Aux3onCurve | Flue gas recirculation (FGR) function is deactivated. Auxiliary actuator 3 is driven along its parameterized ratio control curve | • | • | | deactivated | After the ignition position, auxiliary actuator 3 is always held at the minimum position for flue gas recirculation (indicated with #) and the flue gas recirculation temperature is not evaluated (display XXX). This ensures that the system is operated in a safe state if the flue gas recirculation setting could not be fully realized. We recommend performing burner start-up using this setting prior to setting the flue gas recirculation curve | | • | | time | Auxiliary actuator 3 maintains the ignition position until an adjustable time is reached (parameter "DelaytimeFGR"). During the operation, the burner regulate its load as per the set curve points, without flue gas recirculation. | • | • | | temperature | Auxiliary actuator 3 maintains the ignition position until an adjustable temperature is reached (parameter "FRG On Temp"). During the operation, the burner regulate its load as per the set curve points, without flue gas recirculation. | • | • | | temp.contr. | The position of auxiliary actuator 3 is determined depending on the flue gas temperature and the ratio control curve. In addition, the
actuator can maintain the ignition position until an adjustable time (parameter FGR On Time) is reached | | • | | TCautoDeact | Same manner of operation as temp.contr., but the function is automatically deactivated should the flue gas sensor become faulty. The actuator is driven to the minimum flue gas recirculation (FGR) position and a warning is issued | | • | | deactMinpos | After the ignition position, auxiliary actuator 3 always maintains the minimum flue gas recirculation (FGR) position (indicated by #) and the flue gas recirculation (FGR) temperature is not evaluated (display of XXX). The system can thus be driven to a secure state, if it was not possible to fully complete the flue gas recirculation (FGR) settings. It is recommended to use this setting for commissioning the burner before adjusting the flue gas recirculation (FGR) curve | | | | auto deact | Flue gas recirculation (FGR) with temperature compensation was automatically deactivated. Same operation mode as deactMinpos, but a warning is issued | | • | # 10.6 Main parameter of the FGR function | Parameter | Description | LMV50
LMV51.3
LMV52.2 | LMV52.4 | |--|---|-----------------------------|---------| | DelaytimeFGR Gas
DelaytimeFGR Oil | Setting of delay time for auxiliary actuator 3 to be kept in the ignition position after entering phase OPERATION | • | • | | ThresholdFGR Gas ThresholdFGR Oil | Setting of temperature that must not be exceeded so that auxiliary actuator 3 can be kept in the ignition position | • | | | FGR-sensor
(X86 PtNi1000 /
X60 Pt1000 /
X60 Ni1000) | Selection of temperature sensors for temperature-compensated flue gas recirculation (FGR) | • | • | | | Readjustment of calculated temperature-dependent position of auxiliary actuator 3. The setting is made in steps of 1%. | | | | | 100% means no readjustment. | | | | Factor FGR Gas | Settings <100% reduce the amount of recirculate flue gas (moving the damper toward the fully closed position). | | | | Factor FGR Oil | The factor has an impact only when there is a deviation from the learned flue gas recirculation (FGR) temperature. | | • | | | This means that when reaching the initially acquired flue gas recirculation (FGR) temperature, the stored position is approached, independent of the flue gas recirculation (FGR) factor. | | | | | See the Examples of tables showing the damper positions with FGR | | | | | Minimum limitation of position of auxiliary actuator 3 for temp.comp. and TCautoDeact modes. | | | | FGR MinPos | The setting is made as an absolute value and ensures that flue gas recirculation (FGR) always operates with at least a minimum amount of flue gas. | | • | | | The position is also used to ensure a defined damper position for emergency operation or automatically deactivated flue gas recirculation (FGR) | | | | | Maximum limitation of the required position of auxiliary actuator 3 calculated from the current temperature and the warm position. | | | | FGR MaxPos Fact | The setting is made in steps of 1% and refers to the relevant curve-point. Interpolation between the curve-points is linear | | • | The parameter are in side the AZL menu with following structure: | 1st level | 2nd level | 3rd level | 4th level | 5th level | 6th level | Description | |-----------------|-----------------|--------------------------------------|--------------------------|-----------|-----------|-----------------------------------| | Param & Display | | | | | | | | | Flue Gas Recirc | | | | | | | | | FGR-sensor | X60 Pt1000
X60 Ni1000 | | | According to the available probe | | | | ThresholdFGR Gas
ThresholdFGR Oil | 0850 °C | | | According to the regulation needs | | | | DelaytimeFGR Gas
DelaytimeFGR Oil | 063 min | | | According to the regulation needs | | | | Factor FGR Gas
Factor FGR Oil | 10100% | | | According to the regulation needs | | | | FGR MinPos | | | | According to the regulation needs | | | | FGR MaxPos Fact | 0100% | | | According to the regulation needs | WARNING: Only in case of FGR temperature compensation function. If the detected temperature value is lower than the value recorded during the curve setting, the AUX3 servomotor doesn't reach the set position, but it will be closer. In this condition flue gas recirculation flow could be not sufficient or too much. NOx value could be different from the expected or the flame could be instable. Try to reduce the correction factor ("Factor FGR Gas" or "Factor FGR Oil"). In case readjust the FGR curve. Probably the point was saved also if the flue gas temperature were too far from the regime condition. # 10.7 Example of FGR factor and FGR Maps Factor on the burner regulation. We consider to set the AUX3 for FGR with the "temp.contr." Mode The curve is as per the below table. | Point | 1 | 2 | 3 | 4 | Note | | |-----------------|--------|--------|--------|--------|--|--| | Load % | 37,5 % | 62,5 % | 75 % | 100 % | | | | AUX3 FGR Curve | 19,3 ° | 25,0 ° | 28,5 ° | 37,0 ° | | | | FGR temperature | 72 °C | 105 °C | 121 °C | 150 °C | The flue gas value increase from low to high flame. The temperature is with burner in operative condition. | | LMV52.400 will calculate a "Zero Curve" referred to flue gas 0°C temperature. The "Zero Curve" is calculated in reference to the effect of the temperature on the smoke density. If "FGR factor" is set at 100% LMV will not make any additional correction. | Point | 1 | 2 | 3 | 4 | Note | |----------------------------------|-------|-------|---------|---------|------------------------| | Pos. FGR con T = 0 °C zero curve | 15 °C | 18 °C | 19,7 °C | 23,8 °C | FGR Factor set on 100% | If "FGR factor" is set at lower value than 100% LMV will apply an additional correction to calculate the "Zero Curve". If "FGR factor" is 50%, the new "zero Curve" will be | Point | 1 | 2 | 3 | 4 | Note | |----------------------------------|------|------|------|-------|--| | Pos. FGR con T = 0 °C zero curve | 7,6° | 9,0° | 9,8° | 11,9° | FGR Factor set on 50% The above example shows that – with the zero curve – a flue gas recirculation (FGR) factor of 50% leads to a 50% reduction of the damper positions. | If the temperature value of the smoke during the operation of the burner is higher than the temperature value during the commissioning, the AUX3 position will be bigger than the set values. To avoid a wide opening of the FGR butterfly valve it could be necessary to limit the automatic correction LMV52.400. This could be necessary if the AUX3 opening become bigger than 90°, if a flame instability happen, or the flue gas recirculation is too big... To limit the correction due to a higher temperature value, it become necessary to set the parameter "FGR MaxPOS Factor". | Point | 1 | 2 | 3 | 4 | Note | |----------|-------|-------|-------|-------|---| | Pos. FGR | 21,2° | 27,5° | 31,4° | 40,7° | FGR MaxPOS Factor set on 10% I valori sono il 10% in più rispetto ai corrispondenti settati inizialmente. | **FGR MaxPOS Factor** The LMV52.4... performs a linear interpolation of the damper positions between the setting values and the *zero curve*, depending on the current flue gas temperature. FGR Factor 50% When the flue gas temperatures lie above the setting values, the calculated damper positions are higher than the setting values. # 11 Cold start thermal shock (CSTP) If there is a steam boiler or a boiler that must start up cold in the plant and to avoid thermal shocks a slow heating is required for the boiler by maintaining the burner at the minimum output, the automatic function "Cold start thermal shock" can be performed instead of the manual operation at minimum load. The CSTP (Cold Start Thermal Schock) function can be enabled by the Technical service only (access by reserved password). if this function is enabled, when the burner starts up the "Thermal shock protection activated" message will be shown. If this function is not enabled, after start-up, the burner will rapidly increase the load according to the requested value. The CSTP function is a Service level paramter, to enable this function proceed as follows: | 1st level | 2nd level | 3rd level | 4th level | 5th level | 6th level | Description | |------------------|----------------|------------|----------------------|--|-------------|---| | Params & Display | | | | | | Menu level for making the parameter settings | | | LoadController | | | | | Settings for the internal load controller | | | • | ColdStart | | | | Settings for the cold start (thermal shock protection) | | | | | ColdStartOn | Deactivated
Activated | | The parameter ColdStartOn deactivates or activates the Cold start protection function, the other parameters are factory set and can be changed following the next programming rows (see diagram) | | | | | ThresholdOn | 0100%Wcurren | 20% | | | | | <u></u> | StageLoad | 0100% | 15% | | | | | | StageSetp_M od | 1100% Wcurrent | 5% | | | | | | Stage- Setp_Stage | 1100% Wcurrent | 5% | | | | | | MaxTme- Mod | 163 min | 3 min | | | | | (| MaxTmeStage | 163 min | 3 min | Cold start thermal shock protection, maximum time per step (multistage) | | | | |
ThresholdOff | 1100% Wcurrent | 80% | Cold start thermal shock protection deactivation level referred to the current set-point (Wcurrent) | | | | (1) | Additional-Sens | Deactivated
Pt100
Pt1000
Ni1000 | Deactivated | Select extra sensor for cold start thermal shock protection | | | | | Temp Cold- Start | 02000 °C | | Display of temperature acquired by extra
sensor for the cold start thermal shock
protection function | | | | | Setpoint AddSensor | 0450 °C | 60°C | Set-point for extra sensor for cold start thermal shock protection | | | | (1) | Release Stages | no release/ release | release | Cold start thermal shock protection load step stage mode (multistage operation) | | | | | MaxTmeStage | 163 min | 3 min | Cold start thermal shock protection, maximum time per step (multistage) | | | | | ThresholdOff | 1100% Wcurrent | 80% | Cold start thermal shock protection deactivation level referred to the current set-point (Wcurrent) | | | | (| AdditionalSens | deactivated Pt100
Pt1000 Ni1000 | deactivated | Select extra sensor for cold start thermal shock protection | | | | | Temp Cold- Start | 02000 °C | | Display of temperature acquired by extra
sensor for the cold start thermal shock
protection function | | | | <u> </u> | Setpoint Add- Sensor | 0450 °C | 60 °C | Set-point for extra sensor for cold start thermal shock protection | | | | | Release Stages | no release/ release | release | Cold start thermal shock protection load step stage mode (multistage operation) | **Note:** by enabling the manual operation (this function can be set at user level also -see chapter "manual operation") the CSTP function is momentary excluded, when enabling the automatic operation again, the CSTP function (previously set at Service level) will be enabled as well. # 12 BURNER MANUAL OPERATION The operator can decide if choosing burner manual operation at a settable fixed load or modulating operation through the automatic load controller, then can also set the burner shutdown by means of the "burner off" function. Choose the type of operation (Au-tom / Manual / Off). | 1st level | 2nd level | 3rd level | Password | Description | |-------------------|-----------------------|--------------------------------------|----------|--| | ManualOpe- ration | | | | Menu level for activating manual operation with the preselected load | | | Au-tom/
Manual/Off | | | Selection of manual or automatic operation | | | | Automatic/ Burner
on / Burner off | User | | Setting the load percentage for the manual operation To set the load percentage at which the burner must operate in manual mode, proceed as described below. | 1st level | 2nd level | 3rd level | Password | Description | | | |-------------------|--------------------|-----------|----------|--|--|--| | ManualOpe- ration | flanualOpe- ration | | | Menu level for activating manual operation with the preselected load | | | | | SetLoad | | | Set target load | | | | | . | 0100% | User | | | | | Terminal | | | | + | Description of connection termi- nals | | |----------|--------|---------------|-------|--------|---|--| | group | Connec | ction symbol | Input | Output | · | Electrical rating | | | PIN1 | | | Х | Fan motor contactor | AC 230 V +10 % / -15 %, 5060
Hz, 1 A, cos.0.4 | | X3-01 | PIN2 | MOTOR | | х | Alarm | AC 230 V +10 % / -15 %, 5060
Hz, 1 A, cos.0.4 | | | PIN1 | | х | | Air pressure switch (LP) | AC 230 V +10 % / -15 %, 5060
Hz, Imax 1.5 mA | | X3-02 | PIN2 | | | х | Power signal for air pressure switch (LP) | | | | PIN1 | | х | | End switch burner flange | AC 230 V +10 % / -15 %, 5060
Hz, Imax 5 A | | X3-03 | PIN2 | FLANGE | | х | Power signal for end switch burner flange | | | | PIN1 | | х | | Safety loop | AC 230 V +10 % / -15 %, 5060
Hz, Imax 5 A | | | PIN2 | SAFETY | | х | Power signal for safety loop | AC 230 V +10 % / -15 %, 5060
Hz, Imax 5 A | | | PIN3 | L-> | х | | Protective earth (PE) | 112, IIIIax 3 A | | X3-04 | PIN4 | PE LINE | х | | Supply voltage neutral conductor (N) | | | | PIN5 | VOLTAGE | х | | Supply voltage live conductor (L) | AC 230 V +10 % / -15 %, 5060
Hz, fuse 6.3 AT (DIN EN 60 127 | | | | | | | Fuel selection "internal" if pin 1-2 is not used | Z / 5) | | | PIN1 | INT — < L | х | | Fuel selection gas | AC 230 V +10 % / -15 %, 5060
Hz, Imax 1.5 mA | | X4-01 | PIN2 | GAS — OIL — | х | | Fuel selection oil | AC 230 V +10 % / -15 %, 5060
Hz. Imax 1.5 mA | | | PIN3 | | х | | Fan contactor contact (FCC) or flue gas recirculation pressure switch | AC 230 V +10 % / -15 %, 5060
Hz, Imax 1.5 mA | | | PIN4 | RESET | х | | Reset / manual lockout | AC 230 V +10 % / -15 %, 5060
Hz, Imax 1.5 mA | | | PIN1 | | | х | Protective earth (PE) | | | | PIN2 | ■ PE IGNITION | | х | Neutral conductor (N) | | | X4-02 | PIN3 | N D | | x | Ignition | AC 230 V +10 % / -15 %, 5060
Hz, 2 A, cos.0.2 | | | PIN1 | | | х | Protective earth (PE) | | | | PIN2 | PE □□ | | х | Neutral conductor (N) | | | X4-03 | PIN3 | N (START) | | x | Start signal or pressure switch relief (air pressure switch test valve) | AC 230 V +10 % / -15 %, 5060 Hz, 0.5 A, cos.0.4 | | Terminal | Connecti | on symbol | Ħ | Output | Description of connection terminals | Electrical rating | |----------|----------|---|-------|--------|--|--| | group | | T | Input | Out | | | | | PIN1 | | | х | Protective earth (PE) | | | X5-01 | PIN2 | PE PE | х | | , | AC 230 V +10 % / -15 %,
5060 Hz, Imax 1.5 mA | | | PIN3 | | | х | oil (D\Mmin oil) | AC 230 V +10 % / -15 %,
5060 Hz, Imax 500 mA | | | PIN1 | | | х | Protective earth (PE) | | | X5-02 | PIN2 | ■ PE
■ max → □ | х | | , | AC 230 V +10 % / -15 %,
5060 Hz, Imax 1.5 mA | | | PIN3 | | | | Power signal for pressure switch-max-oil (DWmax-oil) | AC 230 V +10 % / -15 %,
5060 Hz, Imax 500 mA | | PIN1 | PIN1 | ON/OFF - | х | | Controller (ON / OFF) | AC 230 V +10 % / -15 %,
5060 Hz, Imax 1.5 mA | | | PIN2 | ■ V 3 - V 3
- V 3 | х | | Controller closes / stage 3 | AC 230 V +10 % / -15 %,
5060 Hz, Imax 1.5 mA | | X5-03 | PIN3 | | х | | , , | AC 230 V +10 % / -15 %,
5060 Hz, Imax 1.5 mA | | | PIN4 | | | х | <u> </u> | AC 230 V +10 % / -15 %,
5060 Hz, Imax 500 mA | | | PIN1 | START L → HO-START L → | х | | | AC 230 V +10 % / -15 %,
5060 Hz, Imax 1.5 mA | | | PIN2 | | | х | Power signal start release oil | AC 230 V +10 % / -15 %,
5060 Hz, Imax 500 mA | | X6-01 | PIN3 | | х | | Direct heavy oil start | AC 230 V +10 % / -15 %,
5060 Hz, Imax 1.5 mA | | | PIN4 | | | x | , | AC 230 V +10 % / -15 %,
5060 Hz, Imax 500 mA | | | PIN1 | | | х | Protective earth (PE) | | | | PIN2 | ■ PE | | х | Neutral conductor (N) | | | X6-02 | PIN3 | N THE MOO | | х | | AC 230 V +10 % / -15 %,
5060 Hz, 2 A, cos.0.4 | | | PIN1 | | | х | Protective earth (PE) | | | | PIN2 | PE PE | | х | Neutral conductor (N) | | | X6-03 | PIN3 | N SV | | | , | AC 230 V +10 % / -15 %,
5060 Hz, 1 A, cos.0.4 | | Terminal | Connection | on symbol | Input | Output | Description of connection termi- nals | Electrical rating | |----------|------------|-------------------|-------|--------|---------------------------------------|--| | group | | Connection symbol | | Out | · | , and the second | | | PIN1 | | | х | Protective earth (PE) | | | | PIN2 | PE PE | | х | Neutral conductor (N) | | | X7-01 | PIN3 | N V2 | | | Fuel valve 2 (oil) | AC 230 V +10 % / -15 %, 5060
Hz, 1 A, cos.0.4 | | | PIN1 | | | х | Protective earth (PE) | | | | PIN2 | PE PE | | х | Neutral conductor (N) | | | X7-02 | PIN3 | N V3 | | | Fuel valve 3 (oil) | AC 230 V +10 % / -15 %, 5060
Hz, 1 A, cos.0.4 | | | PIN1 | | | х | Protective earth (PE) | | | X7-03 | PIN2 | ■ PE | х | | Start release gas CPL (LMV52) | AC 230 V +10 % / -15 %, 5060
Hz, Imax 1.5 mA | | | PIN3 | | | x | Power signal (reserve) | AC 230 V +10 % / -15 %, 5060
Hz, Imax 500 mA | | Terminal
group | Connection symbol | | nput | Output | Description of connection termi- nals | Electrical rating | |-------------------|--------------------------|------|----------|--------|---|--| | <u>9.0up</u> | | | <u> </u> | 0 | | AC 230 V +10 % / -15 %, 5060 | | | OII L C | PIN2 | | х | Firing on oil | Hz, 1 A, cos.0.4 | | X8-01 | OIL +⊗-L ■
GAS +⊗-L ■ | PIN1 | | x | Firing on gas | AC 230 V +10 % / -15 %, 5060
Hz, 1 A, cos.0.4 | | | | PIN4 | | х | Protective earth (PE) | 12, 17, 000.0.4 | | | PE - | PIN3 | | х | Neutral conductor (N) | | | X8-02 | N N | PIN2 | | х | Wiring point for valves connected in series | | | | V1 X | PIN1 | | х | Fuel valve 1 (oil) | AC 230 V +10 % / -15 %, 5060
Hz, 1 A, cos.0.4 | | | | PIN4 | | х | Protective earth (PE) | | | | PE - | PIN3 | | х | Neutral conductor (N) | | | X8-03 | N N | PIN2 | | х | Wiring point for valves connected in series | | | V1 X | V1 X | PIN1 | | х | Fuel valve 1 (oil) | AC 230 V +10 % / -15 %, 5060
Hz, 1 A, cos.0.4 | | | | PIN4 | | х | Fuel valve 1 (gas) | AC 230 V +10 % / -15 %, 5060
Hz, 2 A, cos.0.4 | | | V1 <u>X</u> L = | PIN3 | | х | Fuel valve 2 (gas) | AC 230 V +10 % / -15 %, 5060
Hz, 2 A, cos.0.4 | | X9-01 | PV X | PIN2 | | х | Fuel valve (gas) | AC 230 V +10 % / -15 %, 5060
Hz, 2 A, cos.0.4 | | | SV 🖫 L 💻 | PIN1 | | х | Fuel valve (shutoff valve-(gas) | AC 230 V +10 % / -15 %, 5060
Hz, 2 A, cos.0.4 | | | | PIN2 | | х | Protective earth (PE) | | | X9-02 | PE N | PIN1 | | х | Neutral conductor (N) | | | | | PIN4 | x | | Pressure switch-min-gas, start rele- ase gas | AC 230 V +10 % / -15 %, 5060
Hz, Imax 1.5 mA | | | min max max | PIN3 | х | | Pressure switch-max-gas (DWmax- gas) | AC 230 V +10 % / -15 %, 5060
Hz, Imax 1.5 mA | | X9-03 | LT (CPI) | PIN2 | x | | Pressure switch-valve proving-gas / leakage test or valve closing con- tact (CPI) | AC 230 V +10 % / -15 %, 5060
Hz, Imax 1.5 mA | | | <u> </u> | PIN1 | | х | Power signal for pressure switch | AC 230 V +10 % / -15 %, 5060
Hz, Imax 500 mA | | | | | | | 1 | | |---------------------|-------------------|------|-------|--------|---|--| | Termi- nal
group | Connection symbol | | Input | Output | Description of connection termi- nals | Electrical rating | | | | PIN4 | | | Neutral conductor (N) | AC 230 V +10 % / -15 %, 5060 Hz,
max 1 mA | | | LINE N | PIN3 | | х | Power signal transformer | | | X10-01 | | PIN2 | x | | AC power signal GO | AC 12 V +10 % / -15 %, 5060 Hz,
max 1.2 mA | | | 12VAC G0 G | PIN1 | x | | AC power signal fan motor (G) | , | | | | PIN6 | x | | QRI (IR detector) / QRA7 signal voltage | Umax DC 5 V | | | FSV/QRI = | PIN5 | | х | Protective earth (PE) | | | | PE - | PIN4 | | х | Neutral conductor (N) | | | X10-02 | FLAME L | PIN3 | | х | Power signal | AC 230 V +10 % / -15 %, 5060 Hz,
Imax 500 mA | | | POWER QRI | PIN2 | | х | QRI (IR detector) / QRA7 power supply | DC 14 / 21 VC Imax 100 mA | | | QRB = | PIN1 | х | | QRB signal voltage | Max. DC 8 V | | X10-03 | ION = | PIN1 | | x | lonization probe (ION) (alternati- vely QRA2/ QRA4.U/QRA10, refer to section <i>Description of inputs and outputs</i>) | Umax (X3-04-PINS) Imax. 0.5 mA | | | | PIN6 | | х | Reference ground (PELV) | | | | GND - | PIN5 | | х | Communication signal (CANL) | DC U <5 V, Rw = 120 Ù, level to ISO-DIS
11898 | | | CANL | PIN4 | | х | Communication signal (CANH) | | | | CANH 12VAC2 | PIN3 | | х | AC power supply for actuators / display and operating unit AZL5 | AC 12 V +10 % / -15 %, 5060 Hz,
Fuse max. 4 A | | X50 | 12VAC1 - | PIN2 | | х | AC power supply for actuators / display and operating unit AZL5 | | | | Shield - | PIN1 | | х | Shield connection (functional earth) | | | | | PIN6 | | х | Reference ground (PELV) | | | | GND - | PIN5 | | х | Communication signal (CANL) | DC U <5 V, Rw = 120 Ù, level to ISO-DIS
11898 | | | CANL - | PIN4 | | х | Communication signal (CANH) | | | | CANH 12VAC2 | PIN3 | | х | AC power supply for actuators / display and operating unit AZL5 | AC 12 V +10 % / -15 %, 5060 Hz,
Fuse max. 4 A | | X51 | 12VAC1 | PIN2 | | х | AC power supply for actuators / display and operating unit AZL5 | | | | Shield - | PIN1 | | х | Shield connection (functional earth) | | | | | | | (functional earth) | | |-----|----------|------------------|-----|-------------------------------------|--------------------------------| | | 4 |] PIN4 | 4 x | | | | | - FE F | | | AC power supply from transformer to | | | V50 | 12VAC2 | PIN | 3 x | LMV5 system | AC 12 V +10 % / -15 %, 5060 Hz | | X52 | м 🗕 | PIN | 2 x | Reference ground (PELV) | | | | 12VAC1 - | | | AC power supply from transformer to | | | | | PIN [,] | 1 x | LMV5 system | AC 12 V +10 % / -15 %, 5060 Hz | | | | | | | | <u> </u> | |-------------------|-------------------------|------|-------|--------|--|----------------------------| | Terminal
group | Connection symbol | | Input | Output | Description of connection termi- nals | Electrical rating | | Temperatur | e / pressure controller | | | ı | T | T | | | | PIN5 | x | | Functional earth for shield connec- tion | | | | (⊢ FE P | PIN4 | х | | Reference ground | | | | | PIN3 | х | | Temperature sensor input Pt / LG-
Ni
1000 | | | X60 | 1 0 0 | PIN2 | x | | Line compensation temperature sensorPT100 | | | | Pt/Ni 1000 | PIN1 | х | | Temperature sensor input PT100 | | | | | PIN5 | х | | Functional earth for shield connec- tion | | | | (⊢ FE ⊨ | PIN4 | х | | Reference ground | | | | 0 - | PIN3 | х | | Current input for temperature / pressure signal 0/420 mA | DC 0/420 mA | | | 4-20 mA | PIN2 | x | | Voltage input for temperature / pressure signal DC 010 V | DC 010 V | | X61 | 0-10 V 💻 | | | | | | | | Power Supply Sensor | PIN1 | | x | Power supply for temperature / pressure transmitter | approx. DC 20 V Max. 25 mA | | | | PIN5 | х | | Functional earth for shield connec- tion | | | | ⊕ FE F | PIN4 | х | | Reference ground | | | | 0 = | PIN3 | х | | Current input for setpoint or load | DC 020 mA | | | 4-20 mA | PIN2 | х | | Voltage input for setpoint or load | DC 010 V | | X62 | 0-10 V | PIN1 | | х | Power supply for setpoint changeo- ver | approx. DC 24 V Max. 2 mA | | | | PIN3 | x | | Functional earth for shield connec- tion | | | | - FE F | PIN2 | | х | Reference ground | | | X63 | 0 = 4-20 mA = | PIN1 | | х | Current output for burner(LOAD OUTPUT) | DC 420 mA, RLmax = 500 £[| ## RECOMMENDATIONS FOR LMV5x CONNECTIONS Connections affected by EMC noises are related to the bus cable (actuator line cable, PLL52), detection probe cable, speed sensor cable, 4-20mA signal cable that controls the VSD. Input and power cables (400V e 230V) must be laid separately from the signal cables. The bus cable between control panel and burner and between burner and PLL52 board (used when O2 trim control must be performed) must be laid separately and far from power cables. When long cables must be provided, it is recommended to put the bus cable into a pipe or a metallic sheath: the sheath ends must be grounded with suitable rings. Provide a shielded three-pole cable type FG7OH2R+T (see Annex 1), between VSD and motor; earth must be outside the shielding. Shielding must get to the lower part of the VSD and get to the motor junction box. Shielding must be connected to the equipotential ground on both ends, better with suitable rings. Otherwise, a standard cable can be used also but put inside a pipe or metallic sheath (the sheath ends must be grounded with suitable rings) and an earth external wire for the motor ground. The cable for the 4÷20mA signal that controls the VSD, must be shielded, only LMV5x side ends connected to the equipotential terminal. If the VSD is not inside the control panel, the cable must be laid separately inside a metallic sheath earthed by means of rings. As for the speed sensor cable and QRI detection probe cable, provide a "Ethernet " cat.5 or 6 cable, inside a metallic sheath (with ends earthed by means of rings) and laid separately from the motor cable. As the sensor uses three wires, divide and twist the pairs to avoid noises. Alternatively, provide a 3x2x0,50 twisted cable Liycy type (see Annex 2). In case of O2 trim control version, O2 probe and PLL52 board must be connected by means of a 3x2x0,50 twisted cable Liycy type (see Annex 2). NB: when a shielding has both ends wired to Earth, be sure they are at the same potential. If there is any Voltage difference, ground just one of the two ones, generally the one closest to the weakest, respect to EMC, component. Anyway give way to the burner control, that is wire to ground the end of the shielding closest to the LMV. For instance, the cable between LMV and VSD, if the shielding has only one end wired to Earth, this one has to be the one LMV side. # Annex1 – Example for motor cable # **CARATTERISTICHE TECNICHE** | Colore delle anime: | | UNEL 00722 / VDE 0293 (Tab. 8) | |--------------------------------|--|--| | Conduttori: | rame rosso elettrolitico | normativa CEI EN 60228 CI.5 (Tabella 9 | | Isolante: | elastomero silanico di qualità G7 | normativa CEI 20-11 - CEI EN 50363 | | Separatore: | nastro poliestere-mylar | | | Schermatura: | a treccia capillari di rame rosso elettrolitico cop. > 8 | 30.% | | Guaina esterna: | PVC di qualità TM2 | normativa CEI 20-11 - CEI EN 50363 | | Colore della guaina: | Grigio RAL 7035 | | | Prova N.P. verticale: | su singolo conduttore o cavo isolato | normativa CEI EN 60332-1-2 | | Prova GAS emessi: | durante la combustione | normativa CEI EN 50267-2-1 | | Resistenza agli olii: | | normativa CEI 20-34/0-1 | | Prova N.P.I.: | | normativa CEI 20-22/2 | | Resistenza elettrica: | relativamente alla sezione | normativa CEI EN 60228 (Tabella 9) | | Tens. nominale Uo/U: | 0,6/1 kV | | | Tensione di prova: | 4000 V | | | Temperatura d'esercizio: | (- 25 °C ÷ + 90 °C) | | | Temperatura di corto circuito: | 250 °C | | | Marcatura: | BERICA CAVI S.P.A. (VI) FG70H2R + T 0,6/1 kV 0.F | R. CEI 20-22 II CE Anno/Lotto - N° Anime x Sezione + T | | Raggio di curvatura: | minimo 15 volte diametro esterno | | # TECHNICAL FEATURES | Cores colour code: | | UNEL 00722 / VDE 0293 (Tab. 8) | |-------------------------------|--|--| | Conductors : | fine wires stranded of bare copper | CEI EN 60228 Cl.5 (Tab.9) rule | | Insulation: | G7 quality rubber | CEI 20-11 - CEI EN 50363 rules | | Assembling: | polyester-mylar tape | | | Shield: | bare copper braid 80% covering | | | Outer sheath: | TM2 quality PVC | CEI 20-11 - CEI EN 50363 rules | | Sheath colour code: | Grey RAL 7035 | | | Vertical fire retardant test: | on single conductor or insulated cable | CEI EN 60332-1-2 rule | | Emission GAS test: | during the combustion | CEI EN 50267-2-1 rule | | Oil resistant test: | | CEI 20-34/0-1 rule | | Flame retardant test: | | CEI 20-22/2 rule | | Electric resistance: | according to | CEI EN 60228 (Tab. 9) | | Working voltage: | 0,6/1 kV | | | Testing voltage: | 4000 V | | | Working temperature: | (-25 °C ÷ +90 °C) | | | Short circuit temperature: | 250 °C | | | Outer printing: | BERICA CAVI S.P.A. (VI) FG70H2R + T 0,6/1 KV O.R. CEI 20 | -22 II C€ - Year/Lot - Nr. of cond. by cross sect. + T | | Bending radius: | cable outer diameter x 15 | | # INDUSTRIA E AUTOMAZIONE # FG70H2R+T 0,6/1 kV A RIDOTTA EMISSIONE DI ALOGENI # FG70H2R+T 0,6/1 kV WITH REDUCED HALOGEN EMISSION | TIPO
TYPE | Ø ESTERNO
MEDIO
MEDIUM
Ø OUTER | PESO
MEDIO
MEDIUM
WEIGHT | CODICE
PRODOTTO
ITEM
CODE | |---------------|---|-----------------------------------|------------------------------------| | n° x mm² | mm | kg x km | | | 3x1,5 + 1G1,5 | 10,8 | 173,0 | B5803150 | | 3x2,5 + 1G2,5 | 12,6 | 254,0 | B5803250 | | 3x4 + 1G4 | 15,3 | 365,0 | B5803400 | | 3x6 + 1G6 | 17,4 | 497,0 | B5803600 | | 3x10 + 1G10 | 20,6 | 730,0 | B58031000 | | 3x16 + 1G16 | 24,8 | 1095,0 | B58031600 | | 3x25 + 1G25 | 30,1 | 1680,0 | B58032500 | - 24 | | | | | | - 100 | | | | | M. | | | | | | | | | | | | | | | - 1 | | | | | | | | | | No. | | | | | TIPO
TYPE | Ø ESTERNO
MEDIO
MEDIUM | PESO
MEDIO
MEDIUM | CODICE
PRODOTTO
ITEM | |------|--------------|------------------------------|-------------------------|----------------------------| | | | Ø OUTER | WEIGHT | CODE | | n | ° x mm² | mm | kg x km | - 100 | | | | | | ED AL | | | | | | D-10-0 | | | | | | | | | | | 0.61 | - 0 | | | | | | | | | | | U.S. | A Comment | | | | | | | | | 170 | | | | | | 111- | ## CAVI TIPO "Li-YCY-P" A COPPIE SCHERMATI A TRECCIA IMPIEGO: Cavi schermati per segnali e trasmissione dati per applicazioni in elettronica ed informatica, efficaci contro le interferenze elettromagnetiche ed atti ad offrire una protezione contro influenze capacitive dovute a campi elettrici. ## CABLES TYPE "Li-YCY-P" TWISTED PAIRS, TINNED COPPER BRAID SHIELD STANDARD USE: Signal and data transmission shielded cables for electronics and information technology applications, effective against electromagnetic interferences and suited to offer protection against capacitive influences due to electric fields. #### CARATTERISTICHE TECNICHE **TECHNICAL FEATURES** CONDUTTORI; CONDUCTORS Flexible bare copper conductors sec. CEI 20-29 (IEC 228) CI. 5, VDE 0295 CI. 5, NF C32-013 CEI 20-29 (IEC 228) CI. 5, VDE 0295 CI. 5, (0,34 mm²: VDE 0295 Cl.2) NF C32-013 Ref. (0,34 mm2 : VDE 0295 Cl.2) ISOLANTE: INSULATION: Polyvinylchloridə (PVC) CEI 20-11 Cl. R2, VDE 0207 Cl. YI2 Rəf. Polivinilcloruro (PVC) Sec. CEI 20-11 Cl. R2, VDE 0207 Cl. YI2 Colour code according to DIN 47100 Codici colori: a norma DIN 47100 SEPARATORE: ASSEMBLING: Nastro di poliestere Polyester tape helically wound SCHERMATURA: A treccia di rame stagnato Tinned copper braid Cordina di continuità a richiesta On request with drain wire **GUAINA ESTERNA:** JACKET Polyvinylchloride (PVC) Polivinilcloruro (PVC) Sec. CEI 20-20 CI. TM2, VDE 0207 CI. YM2 CEI 20-20 Cl. TM2, VDE 0207 Cl. YM2 Ref. colore: grigio (diverso a richiesta) colour: grey or on request RESISTENZA ELETTRICA DEI CONDUTTORI: ELECTRICAL CONDUCTOR RESISTANCE: 0,14 mm²: <148 Ohm/Km 0,14 mm²: <148 Ohm/Km 0,25 mm2: <79 Ohm/Km 0.25 mm2: <79 Ohm/Km 0.34 mm2: <55 Ohm/Km 0.34 mm2: <55 Ohm/Km 0,50 mm²: <39 Ohm/Km 0,75 mm²: <26 Ohm/Km <39 Ohm/Km < 26 Ohm/Km 0.50 mm²: 0.75 mm²: 1mm²: <19,5 Ohm/Km 1 mm2: <19,5 Ohm/Km TEMPERATURA DI ESERCIZIO: WORKING TEMPERATURE: posa fissa: -25°C + 70°C posa mobile: -15°C + 70°C fixed installation: -25°C + 70°C flexing: -15°C + 70°C RAGGIO DI CURVATURA: BENDING RADIUS: 15 volte il diametro del cavo 15 times overall diameter of cable WORKING VOLTAGE: TENSIONE DI ESERCIZIO: 250 V TENSIONE DI PROVA: TEST VOLTAGE: 31 #### CAVI TIPO "Li-YCY-P" A
COPPIE SCHERMATI A TRECCIA # CABLES TYPE "Li-YCY-P" TWISTED PAIRS, TINNED COPPER BRAID SHIELD #### PROVA N.P. FIAMMA: Standard: sec. CEI 20-35 (IEC 332.1) A richiesta: sec. CEI 20-22 II (IEC 332.3A) #### FLAME RETARDANT TEST: Standard: CEI 20-35 (IEC 332.1) Ref. On request: CEI 20-22 II (IEC 332.3A) Ref. #### IMPEDENZA DI TRASFERIMENTO: 28.204.1.25.3.000 25x2x0.25 16.4 340.0 max 200 mohm/m (f<10MHz) #### SURFACE TRANSFER IMPEDANCE: max 200 mohm/m (f<10MHz) cond/cond: 120 nF/km (nom.) cond/sch: 180 nF/km (nom.) #### CAPACITANCE: cond/cond: 120 nF/km (nom.) cond/shield: 180 nF/km (nom.) | CODICE | FORMAZIONE | ø esterno
medio | Peso medio
Kg/Km | CODICE | FORMAZIONE | ø esterno
medio | Peso medio
Kg/Km | |-------------------|------------|---------------------|------------------------|-------------------|------------|---------------------|------------------------| | CODE | TYPE | outer
diameter ø | Medium weight
Kg/Km | CODE | TYPE | outer
diameter ø | Medium weight
Kg/Km | | 28.204.1.02.1.000 | 2x2x0.14 | 5.6 | 40.0 | 28.204.1.02.4.000 | 2x2x0.34 | 7.3 | 68.0 | | 28.204.1.03.1.000 | 3x2x0.14 | 5.9 | 47.0 | 28.204.1.03.4.000 | 3x2x0.34 | 7.8 | 82.0 | | 28.204.1.04.1.000 | 4x2x0.14 | 6.2 | 61.0 | 28.204.1.04.4.000 | 4x2x0.34 | 8.6 | 96.0 | | 28.204.1.05.1.000 | 5x2x0.14 | 7.2 | 68.0 | 28.204.1.05.4.000 | 5x2x0.34 | 10.0 | 110.0 | | 28.204.1.06.1.000 | 6x2x0.14 | 7.6 | 76.0 | 28.204.1.06.4.000 | 6x2x0.34 | 10.6 | 130.0 | | 28.204.1.07.1.000 | 7x2x0.14 | 7.6 | 82.0 | 28.204.1.07.4.000 | 7x2x0.34 | 10.6 | 145.0 | | 28.204.1.08.1.000 | 8x2x0.14 | 8.4 | 90.0 | 28.204.1.08.4.000 | 8x2x0.34 | 11.5 | 150.0 | | 28.204.1.10.1.000 | 10x2x0.14 | 9.8 | 118.0 | 28.204.1.10.4.000 | 10x2x0.34 | 13.0 | 190.0 | | 28.204.1.12.1.000 | 12x2x0.14 | 10.2 | 130.0 | 28.204.1.12.4.000 | 12x2x0.34 | 13.5 | 220.0 | | 28.204.1.16.1.000 | 16x2x0.14 | 11.2 | 160.0 | 28.204.1.16.4.000 | 16x2x0.34 | 15.2 | 250.0 | | 28.204.1.18.1.000 | 18x2x0.14 | 11.7 | 186.0 | 28.204.1.18.4.000 | 18x2x0.34 | 16.0 | 275.0 | | 28.204.1.20.1.000 | 20x2x0.14 | 12.4 | 200.0 | 28.204.1.20.4.000 | 20x2x0.34 | 17.1 | 290.0 | | 28.204.1.25.1.000 | 25x2x0.14 | 14.0 | 273.0 | 28.204.1.25.4.000 | 25x2x0.34 | 19.5 | 400.0 | | 28.204.1.02.3.000 | 2x2x0.25 | 5.8 | 54.0 | 28.204.1.02.5.000 | 2x2x0.50 | 7.6 | 75.0 | | 28.204.1.03.3.000 | 3x2x0.25 | 7.0 | 65.0 | 28.204.1.03.5.000 | 3x2x0.50 | 9.0 | 125.0 | | 28.204.1.04.3.000 | 4x2x0.25 | 7.3 | 89.0 | 28.204.1.04.5.000 | 4x2x0.50 | 10.0 | 140.0 | | 28.204.1.05.3.000 | 5x2x0.25 | 8.0 | 99.0 | 28.204.1.05.5.000 | 5x2x0.50 | 10.8 | 160.0 | | 28.204.1.06.3.000 | 6x2x0.25 | 9.0 | 114.0 | 28.204.1.06.5.000 | 6x2x0.50 | 11.7 | 190.0 | | 28.204.1.07.3.000 | 7x2x0.25 | 9.0 | 120.0 | 28.204.1.07.5.000 | 7x2x0.50 | 11.7 | 220.0 | | 28.204.1.08.3.000 | 8x2x0.25 | 9.6 | 126.0 | 28.204.1.08.5.000 | 8x2x0.50 | 14.0 | 250.0 | | 28.204.1.10.3.000 | 10x2x0.25 | 10.3 | 160.0 | 28.204.1.10.5.000 | 10x2x0.50 | 15.0 | 300.0 | | 28.204.1.12.3.000 | 12x2x0.25 | 11.4 | 171.0 | 28.204.1.12.5.000 | 12x2x0.50 | 15.7 | 345.0 | | 28.204.1.16.3.000 | 16x2x0.25 | 13.1 | 238.0 | 28.204.1.16.5.000 | 16x2x0.50 | 17.6 | 450.0 | | 28.204.1.18.3.000 | 18x2x0.25 | 13.6 | 248.0 | | | | | | 28.204.1.20.3.000 | 20x2x0,25 | 14.2 | 275.0 | | | | | #### CAVI TIPO "Li-YCY-P" A COPPIE SCHERMATI A TRECCIA # CABLES TYPE "Li-YCY-P" TWISTED PAIRS, TINNED COPPER BRAID SHIELD | CODICE | FORMAZIONE | ø esterno
medio | Peso medio
Kg/Km | CODICE | FORMAZIONE | ø esterno
medio | Peso medio
Kg/Km | |-------------------|------------|---------------------|------------------------|-------------------|------------|---------------------|------------------------| | CODE | TYPE | outer
diameter ø | Medium weight
Kg/Km | CODE | TYPE | outer
diameter ø | Medium weight
Kg/Km | | 28.204.1.02.6.000 | 2x2x0.75 | 8.6 | 103.0 | 28.204.1.02.7.000 | 2x2x1 | 9.4 | 122.0 | | 28.204.1.03.6.000 | 3x2x0.75 | 9.0 | 128.0 | 28.204.1.03.7.000 | 3x2x1 | 11.5 | 179.0 | | 28.204.1.04.6.000 | 4x2x0.75 | 10.6 | 167.0 | 28.204.1.04.7.000 | 4x2x1 | 12.8 | 237.0 | | 28.204.1.05.6.000 | 5x2x0.75 | 12.0 | 215.0 | 28.204.1.05.7.000 | 5x2x1 | 13.8 | 297.0 | | 28.204.1.06.6.000 | 6x2x0.75 | 12.8 | 240.0 | | | | | | 28.204.1.07.6.000 | 7x2x0.75 | 12.8 | 265.0 | | | | | | 28.204.1.08.6.000 | 8x2x0.75 | 14.6 | 306.0 | | | | | | 28.204.1.10.6.000 | 10x2x0.75 | 16.0 | 355.0 | | | | | | 28.204.1.12.6.000 | 12x2x0.75 | 17.0 | 405.0 | | | | | | 28.204.1.16.6.000 | 16x2x0.75 | 20.5 | 565.0 | | | | | ### **SIEMENS** Appendix: Example for wiring, earthing and shielding the LMV5-System # Addendum 4: LMV52... with O2 trim control and O2 module #### **General** The LMV52... system is an extended LMV51... system. A special feature of the LMV52... is control of the residual oxygen content to increase the boiler's efficiency. In addition to the features of the LMV51..., the LMV52... provides O2 trim control, control of a maximum of 6 actuators, control of a VSD, and acquisition of cumulated fuel consumption and current fuel throughput. The LMV52... system uses an O2 sensor (QGO20...), an external O2 module, and the standard components of the LMV51... system. ATTENTION: for the proper burner adjustment, it is necessary to install a fuel meter for each burner. The PLL... O2 module is a detached measuring module for the QGO20... sensor and for 2 temperature sensors (Pt1000 / LG-Ni 1000). The module communicates with the LMV52... via CAN bus. The fuel meters must be connected directly to the fuel-related inputs of the basic unit. On the AZL5... display and operating unit, the individual consumption values can be read out and the meter readings can be reset. # Determination of the maximum cable length The maximum cable length between transformer and CAN bus users is dependent on the type of cable (cross-sectional area), the number of actuators and the type of actuator used (current). The following graphs can be used to determine the maximum CAN bus cable lengths between the transformer and group of actuators or the AZL5..., depending on the relevant influencing factors. The assumption was made that the actuators within the group are close to one another. The **minimum** cross-sectional area for the system examples shown results from the start of the curve. The **maximum** cable lengths for the defined system cables AGG5.641 and AGG5.631 result from the points of intersection in the graph. AGG5.631 (cable type 2) AGG5.641 (cable type 1) - (1) 1 x SQM45... (5) 2 x SQM48... - (2) 2 x SQM45... (6) 1 x SQM45... + 1 x SQM48... - (3) 3 x SQM45... (7) 2 x SQM45... + 1 x SQM48... - 4 x SQM45... 8 3 x SQM45... + 1 x SQM48... CAN bus connection between transformer and actuator group When connecting a PLL52... O2 module, the maximum permissible cable length of a network is to be reduced by 2 m. **Example:** - System cable: AGG5.641 (connecting cable to the actuators) - Actuators: 2 x SQM45... The point of intersection of the vertical line for the AGG5.641 (1.25 mm^2) and curve ① (2 x SQM45...) gives a maximum cable length of 33.4 m between the transformer and the group of actuators. Note on example 1 Total length of CAN bus cable ≤ 100 m #### Example 2 ## LMV5... basic unit in the control panel, actuator on the burner; CAN bus cable «LMV5... \rightarrow SA» > 20 m #### Notes on example 2 #### Total length of CAN bus cable ≤ 100 m Whenever the distance between the LMV5... and the last actuator exceeds 20 m, or if more than one SQM48 is used on the burner (refer to sizing chart "Determination of maximum cable length"), a second transformer is required for powering the actuators. In that case, transformer 1 powers the LMV5... basic unit and the AZL5... display and operating unit (**Fig. 1**). Transformer 2 powers the actuators (**Fig. 2**). With the CAN bus cable connections from the LMV5... (**Fig. 1**) to the first actuator (**Fig. 2**), the 2 voltages AC1 and AC2 on the LMV5... side must **not** be connected and only cables CANH, CANL and M (+shielding) are to be connected to the first actuator (**Fig. 2**). In that case, the actuators must be powered by a second transformer which to be located near the actuators. The power from that transformer (lines AC1, AC2, M) must be fed to the actuator (ACT4 in the example above) and then connected through via bus cable AGG5.640 (cable type 1) to all the other actuators. The fuses required for transformer 1 are accommodated in the LMV5... basic unit. For transformer 2, these 3 fuses must be located close to the transformer (for type, refer to Basic Documentation P7550). 39/45 #### Example 3a Installation of all components in the burner; CAN bus cable «LMV52... ↔ SA» > 20 m with 6 actuators and O2 module PLL52... #### Example 3b Installation in the control panel, actuator on the burner; CAN bus cable «LMV52... ↔ SA» > 25 m with 4 actuators and O2 module PLL52... #### Notes on example 3a / 3b #### CAN bus cable with LMV52... and more than 4 actuators and O2 module PLL52... On LMV52... applications with more than 4 actuators (SQM45...), a second transformer is required for powering the extra actuators. In that case, transformer 1 powers the LMV52... basic unit, the **AZL5...**, and the first 4 actuators. Interrupt the connection between the components at a suitable location. On the actuator side, the 2 voltages AC1 and AC2 must **not** be connected but only lines «CANH, CANL and M» (+shield) to the O2 module and the other actuator. In that case, the actuators (SA5, SA6) and the O2 module must be powered by a second transformer to be located near the actuators and the O2 module. Connect the power supply line from that transformer to the O2 module PLL52... (in example 3a «SA6» / in example 3b «Auxiliary terminal) (lines AC1, AC2, M) and from there, via bus cable AGG5.640 (cable type 1), through to the second actuator (SA) and the O2 module. The fuses required for transformer 1 are accommodated in the LMV52... basic unit. Optionally, the supply voltage can also
be delivered via a conduit box and fed into the connecting line between SA4 and PLL52... For transformer 2, the OEM must fit the 3 fuses close to the transformer. #### O2 module In comparison with the LMV51... system, the extra components to be connected with the LMV52... system are the O2 module and the O2 sensor QGO... and, optionally, the combustion air and flue gas temperature sensors. The O2 module is to be connected to the basic unit via the CAN bus. The O2 module must be located in the vicinity of the QGO... (< 10 m), aimed at keeping interference on the sensitive detector lines as low as possible. For sensor heating, the O2 module requires a separate mains connection facility. ### 18.8.1 Inputs and outputs ## **QGO20...** Montageanleitung Mounting instruction Instruction de montage Monteringsanvisning Montage-aanwijzing Istruzioni di montaggio Asennusohje Instrucciones de montaje Monteringsinstruktion Montasjeanvisning Fühler aus Keramik - zerbrechlich Ceramic detector - fragile Sonde en céramique - fragile ## O2-Fühler QGO20... und Rauchgassammler AGO20... Voraussetzungen für eine korrekte messtechnische Erfassung des O2-Gehaltes der Rauchgase: - A QGO20... **nur** mit Rauchgassammler AGO20... einsetzen - B Einbauort des QGO20... so nahe am Brenner wie möglich, in einem Bereich ohne Turbulenzen und Inhomogenitäten. Nicht direkt im Bereich von Klappen oder Bögen montieren. Idealer Abstand: 5 x Kamindurchmesser. - C Zwischen Brenner und Fühler darf keine Luft in die Rauchgase gelangen. - D Strömungsgeschwindigkeit 1...10 m/s. Rauchgastemperatur am Messort ≤ 300°C ## O2-detector type QGO20... and flue gas collector type AGO20... Presupposition for the correct measurement of the O2 content of the flue gases: - A Use QGO20... **only** with flue gas collector type AGO20... - B Mounting position of the QGO as close as possible to the burner, in a homogenous area without any turbulences. Do not mount the QGO20... in the area of dampers or curves. Ideal distance: Five times the diameter of the stack. - C No air must be allowed to join the flue gases on their way from the burner to the detector. - D Flow velocity 1...10 m/s. Flue gas temperature at the measuring position $\leq 300^{\circ}\text{C}$ ## Sonde O2 QGO20... et collecteur des gaz de fumée AGO20... Conditions requises pour une détection correcte de la teneur en O2 des gaz de fumée: - A Utiliser le QGO20... **exclusivement** avec le collecteur des gaz de fumée AGO... - B Lieu de montage du QGO20... le plus près possible du brûleur, dans un domaine homogène sans turbulences. Ne pas le monter dans le domaine des clapets ou dans les courbes. Distance idéale: Cinq fois le diamètre de la cheminée. - C Entre le brûleur et la sonde, il ne doit pas pénétrer d'air dans les gaz de fumée. - D Vitesse d'ecoulement 1...10 m/s. Température des gaz fumée au lieu de la mesure ≤ 300°C #### Anschluss-Schema 6-adriges abgeschirmtes Kabel. Adern möglichst paarweise verdrillt. Abschirmung an Klemme GND des RPO... . Abschirmung nicht mit Schutzleiter oder M verbinden! #### Anschlusskabel z.B.: #### Wiring diagram Shielded 6-core cable. Wires should be twisted in pairs. Screen must be connected to terminal GND of the RPO... . Do not connect the shielding to the protective earth or M! #### Connecting cable e.g.: #### Schéma de raccordement Câble blindé à 6 brins. Brins torsadés si possible par paires. Blindage sur la borne GND du RPO... . Ne pas connecter le blindage avec le conducteur de protection ou MI Câble de raccordement p.ex.: | LifYCY
LiYCY | 6 x 2 x 0,20 / 22 oder
6 x 2 x 0,20 | LifYCY
LiYCY | 6 x 2 x 0,20 / 22 or
6 x 2 x 0,20 | LifYCY
LiYCY | 6 x 2 x 0,20 / 22 ou
6 x 2 x 0,20 | |-----------------|--|-----------------|--|-----------------|--| | B1 (+)
M (-) | Signal O2-Messzelle
Masse für B1, B2 | B1 (+)
M (-) | Signal from O2-measuring cell
Ground for B1, B2 | B1 (+)
M (-) | Signal de la cellule de mesure d'O2
Masse pour B1, B2 | | B2 (+)
M (-) | Thermoelement-Spannung | B2 (+)
M (-) | Thermocouple voltage | B2 (+)
M (-) | Tension de thermocouple | | U3 (+) | Signal Temperaturkompensations-
element | U3 (+) | Signal from temperatue compensation element | U3 (+) | Signal de l'élément de cpmpensation de température | | G2 (-) | Speisung Temperaturkompensations-
element | G2 (-) | Power supply for temperature compensation element | G2 (-) | Alimentation de l'élément de compensation de température | | GND | Masse für Anschirmung | GND | Ground for screening | GND | Masse du blindage | | 3 x 1,5 m | _m ² . | 3 x 1,5 m | m ² · | 3 x 1,5 m | um ² · | | Q4 | Fühlerheizung (AC 230 V) | Q4 | QGO detector heating (AC 230 V) | Q4 | Chauffage de sonde QGO (AC 230 V) | | Q5 | Fühlerheizung (AC 230 V) | Q5 | QGO detector heating (AC 230 V) | Q5 | Chauffage de sonde QGO (AC 230 V) | | | | | | | | | | | | | | | Erde* Vorsicht bei den Anschlüssen U3 und G2! Ein Fehlverdrahten der Anschlüsse führt zu einem Ausfall des Kompensationselementes. * Am RPO... steht nur 1 Erdleiterklemme zur Verfügung. Beide Erdleiter müssen auf eine Klemme geführt werden. Earth* **Caution** when connecting U3 and G2! Faulty wiring leads to failure of the compensation element. * At the RPO..., there is only 1 earth terminal available. Both earth wires must be connected to **the same** earth terminal. Terre* **Prière de faire attention** lors des raccordements U3 et G2. Une erreur de câblage des fils de raccordement conduit à une destruction de l'élément de compensation. * Le RPO... ne dispose que d'une seule borne de mise à la terrre. Les deux fils de mise à la terre doivent être connectés sur **la même** borne. 2/4 4 319 2366 0 #### Hinweise für Installation und Inbetriebnahme - Distanz zwischen Wand des Rauchgaskanals und Rauchgasaustritt (B) des AGO20... min. 10 mm - Die Kaminisolierung darf nicht über den Anschlussflansch hinausragen und dadurch den Fühlerkopf isolieren (therm. Überlastung). Der Fühlerkopf muss frei bleiben! Strahlungswärme vermeiden; z.B. durch Wärmeleitbleche - Bei der ersten Inbetriebnahme ist das Mess-Sytem ca. 2 Stunden vor Gebrauch einzuschalten Bei kurzen Abschaltungen der Anlage (1-2 Wochen) ist es empfehlenswert, das Mess-System (QGO.. und RPO) nicht auszuschalten. - Während des Aufheizvorganges kann der Fühler falsch messen. - QGO20... nie im kalten Zustand bei laufendem Brenner im Kamin einsetzen. - Nach Fühlertausch, Ansteuerung der Fühlerheizung überprüfen. - Spannung an Q4 Q5 muss im 2 s Takt - Sofort auschalten falls Spannung nicht pulsiert » RPO austauschen #### **Commissioning and Installation Guide** - The distance between the wall of the flue gas duct and the flue gas outlet (B) of the AGO20... must be a minimum of 10 mm - The insulation of the chimney must not project beyond the connecting flange, thus insulating the head of the sensor (thermal overload). The head of the sensor must remain uncovered! Avoid heat due to radiation, e.g. through thermal conductive plates - When starting up the plant for the first time, the measuring system should be switched on approx. 2 hours prior to usage. If the plant is switched off for short periods of the time (1 to 2 weeks), it is recommended to leave the measuring system (QGO... and RPO) switched on. - During the heating up phase, the detector could deliver an incorrect signal. - Never use a cold QGO20... in the flueway while burner is operating - After changing the sensor, check the proper functioning of the sensor's heating element - Voltage at Q4 Q5 must pulsate at 2-s intervals - If voltage does not pulsate, switch equipment off immediately - replace RPO #### Instructions de mise en service et installation - La distance entre la paroi de la conduite de gaz et la sortie des gaz de fumée (B) du AGO20... doit être d'au moins 10 mm. - L'isolation de la cheminée ne doit pas dépasser la bride de raccordement, c'est-à-dire couvrir la tête de la sonde (surcharge thermique). La tête de la sonde ne doit pas être couverte! Eviter la chaleur de rayonnement, p.ex. par tôles thermoconductrices - Lors de la première mise en service, le dispositif de mesure doit être raccordé environ 2 heures avant l'utilisation. En case de courtes interruptions de l'installation (1-2 semaines), il est recommandé de ne pas déclencher le dispositif de mesure (QGO... et RPO). - Pendant l'operation d'échauffement, il est possible que la sonde ne mesure pas correctement. - Ne jamais introduire le QGO20... à l'état froid ou le laisser introduit dans la cheminée quand le brûleur est en marche. - Lors d'un changement de sonde, verifier le signal de chauffage de celle-ci. - Les tensions aux bornes Q4 Q5 doivent - Déconnecter immédiatement en cas de noncommutation des tensions - » Echanger le RPO Legende: Strömungsrichtung Direction of flow of flue gases Direction du courant des gaz de fumée Kerben beachten! Observe notches! Attention aux entailles! 7842mb06/0499 4 319 2366 0 3/4 #### Maßbilder / Dimensions / Encombrements #### QGO20... #### AGO20... L = 180 mm für AGO20.001A L = 260 mm für AGO20.002A A = Rauchgaseintritt B = Rauchgasaustritt C = Kerbe D = Flachdichtung (beiliegend) L = 180 mm for AGO20.001A L = 260 mm for AGO20.002A A = Flue gas inlet B = Flue gas outlet C = Notch D = Flat seal (enclosed) L = 180 mm pour AGO20.001A L = 260 mm pour AGO20.002A A = Entrée du gaz de fumée B = Sortie de gaz de fumée C = Entaille D = Joint d'étanchéité plat (inclus) ## **Technical Data PLL52...** | _ | | _ | _ | _ | |---|-----|------|-------|------| | ш | MVβ | 52 k | nasic | unit | Refer to chapter Technical Data! | Р | ı | l 52 | |---|---|------| | | | | | Mains voltage «X89-01» | AC 120 V | AC 230 V | | | | | |------------------------|-----------------------------|----------------------|--|--|--|--| | - | –15 % / +10 % | -15 % / +10 % | | | | | | Safety
class | I with parts accord | ding to II | | | | | | | as per DIN EN 60 | 730-1 | | | | | | Mains frequency | 50 / 60 Hz ±6 % | | | | | | | Power consumption | Ca. 4 VA | Ca. 4 VA | | | | | | Degree of protection | IP54, housing clos | IP54, housing closed | | | | | | | | | | | | | | Transformer AGG5.210 | | | | | | | | - Primary side | AC 120 V | | | | | | | - Secondary side | AC 12 V (3x) | AC 12 V (3x) | | | | | | Transformer AGG5.220 | | | | | | | | - Primary side | AC 230 V | | | | | | | - Secondary side | AC 12 V (3x) | | | | | | | Storage | DIN EN 60 721-3- | .1 | | | | | | Climatic conditions | eless 41/2 | | | | | | #### **Environmental conditions** | Storage | DIN EN 60 721-3-1 | |-----------------------|-------------------| | Climatic conditions | class 1K3 | | Mechanical conditions | class 1M2 | | Temperature range | -20+60 °C | | Humidity | < 95 % r.h. | | Transport | DIN EN 60 721-3-2 | | Climatic conditions | class 2K2 | | Mechanical conditions | class 2M2 | | Temperature range | -30+70 °C | | Humidity | < 95 % r.h. | | Operation | DIN EN 60 721-3-3 | | Climatic conditions | class 3K5 | | Mechanical conditions | class 3M2 | | Temperature range | -20+60 °C | | Humidity | < 95 % r.h. | Condensation, formation of ice or ingress of water are not permitted! ## Terminal ratings, cable lengths and crosssectional areas LMV52... basic unit Refer to chapter «Technical Data / LMV5... and AZL5...!» PLL52... | Cable lengths / cross-sectional areas | | |---------------------------------------|--| | Electrical connection «X89» | Screw terminals up to max. 2.5 mm ² | | Cable lengths | ≤10 m to QGO20 | | Cross-sectional areas | Refer to description of QGO20 | | | Twisted pairs | | | <u> </u> | #### Analog inputs: | Fresh air temperature detector | Pt1000 / LG-Ni1000 | |--------------------------------|-----------------------------| | Flue gas temperature detector | Pt1000 / LG-Ni1000 | | QGO20 | Refer to Data Sheet N7842 | | Interface | Communication bus for LMV52 | #### **USER MANUAL OF MULTI-THERMOSTAT** MCX06C MCX06C is a multi-thermostat with four 100k NTC inputs. It can control up to 4 temperatures showing them (not more than 2 at the same time) on a couple of displays. It is used to check and adjust oil heater temperatures. #### **User interface:** Device: #### Note: In normal operation, the display A shows the oil tank resistor temperature (probe Pb1). In normal operation, the display B shows the oil output temperature (probe Pb3). #### Connections from terminal side: #### **Probe connection:** input Al1 = probe Pb1 = set-point "tr" = oil heater temperature probe; input Al2 = probe Pb2 = set-point "tCl" = plant consent temperature probe (when installed); input Al3 = probe Pb3 = set-point "OlL" = oil heater output temperature probe (PID regulation); input **AI4** = probe **Pb4** = set-point "**tcn**" = oil heater consent temperature probe. #### Menu: To enter the menu below, keep pushing **ENTER** for more than 3 s. | Menu code | Sub-menu code | Function | Notes | |-----------|---------------|------------------------|---| | Prb | Probes values | | You can see in sequence the 4 probe values (UP and DOWN keys): the probe code is on display A (Pb1,, Pb4) and the probe value is on display B (not fitted or out of work probes show ""). | | Log | | Login | It defines the access level to menu and parameters (password) | | | PAS | Password | Password input | | Par | | Parameters menu | Access to parameters (you have to login first) | | | CnF | Configuration menu | Parameter configuration | | | rEG | Regulation menu | Set to set-point, probe, thresholds etc. | | ALA | | Alarm menu | Access to alarm management | | | Act | Active alarms | Show the active alarms | | | rES | Reset alarms & Warning | Reset of the manual reset alarms and warning | | Loc | | Lock/Unlock functions | Not used | | InF | rEL | Software version | Installed software version | | tUN | | Autotuning | Activation On, deactivation ESC PID parameter autotuning | #### Alarms & Warning: When the red triangle on the top left lights, one or more alarms are activated. When the red key on the left lights, the output N05-C5 is active and the relay **KTRS** switches the resistors OFF. Check the reason, correct the failure and, as soon as the temperature is lower than **trS**, reset it through **ALA/rES**. In order to show active alarms and warnings, select the relevant menu through **ALA/Act**.and, using the **UP** and **DOWN** buttons, scroll the lines. In order to perform the manual reset, select ALA/rES. | Code | Description | Sourse | Active simbol | Reset type | |------|----------------------------------|-----------------------|---------------|------------| | trS | High temperature resistors alarm | probe Pb4 > value trS | red key | Manual | | EP1 | Probe Pb1 fault | Probe Pb1 fault | red triangle | Automatic | | EP2 | Probe Pb2 fault | Probe Pb2 fault | red triangle | Automatic | | EP3 | Probe Pb3 fault | Probe Pb3 fault | red triangle | Automatic | | EP4 | Probe Pb4 fault | Probe Pb4 fault | red triangle | Automatic | #### Set point adjustment: All the parameters inside the Par menu are locked by a password. The user can modify only set points (menu **rEG**), without using any passwords. The oil viscosity at the nozzle, should be about 1,5%, which guarantees correct and safe functioning of the burner. The temperature values in the table, guarantee the respect of that parameter and are valid when the pre heating tank is installed on the burner. For different configurations, please refer to the chapter "Recommendations to design heavy oil feeding plants" in the burner manual. Here below recommended set points: | М | enu pa | ath | | Oil viscosity at 50 ℃ according to the letter show n in the burner model | | | | | | |-----|--------|-----|---|--|-----------|-----------------------|------------------------|-------------------------|--| | | | | | Р | | | | | | | | | | | 89 cSt | < 50 cSt | > 50 cSt
< 110 cSt | > 110 cSt
< 400 cSt | > 400 cSt
< 4000 cSt | | | | | | | 12 E | < 7℃ | > 7 €
< 15 € | > 15 ℃
< 50 ℃ | > 50 °E
< 530 °E | | | Par | | | | | | | | | | | rEG | Pb1 | tr | Oil heater temperature probe | parameter not visible | | | | | | | | Pb2 | tCl | Plant consent temperature probe (when installed) | 20°C 70°C 70°C 70°C | | | | | | | | Pb3 | Oil | oil heater output
temperature probe (PID
regulation); | 60-70 ℃ | 110-120 ℃ | 120-130 ℃ | 130-140 ℃ | 140-150° C | | | | | SP0 | Set-point oil heater with oil pump stopped (stand-by) | 45 °C 120 °C 130 °C 140 °C 150 °C | | | 150 ℃ | | | | | Pb4 | tcn | Oil heater consent temperature probe | 40 ℃ | 100 ℃ | 100 ℃ | 110 ℃ | 120 ℃ | | | | | trS | Safety temperature tank resistors (manual reset) | 120 ℃ | 190-200 ℃ | 190-200 ℃ | 190-200 ℃ | 190-200 ℃ | | The above temperature values are suggested and refer to a plant designed according to the prescriptions in the burner user manual. The suggested values can change in reference to the fuel oil specifications. # **KOSTAL INVERTER** Connection and programming for electronically controlled burners with # LMV2x/3x, LMV5x, ETAMATIC and INVERTER regulation Service Manual TECHNICAL INSTRUCTIONS #### Table of contents: INVERTER identification, 3 User interface communication (on request), 4 Electrical connections, 5 Motor connection variants for INVERTERS sizes A, B and C, 5 Motor connection variants for INVERTER size D, 6 Connection of INVERTER signals and commands, 7 Electrical connections and parameter configuration, 7 0-10V / 4-20mA analogue input configuration, 8 Configuration of control contact / INVERTER starting and stopping, 9 Configuration of INVERTER start / stop parameters and operating mode, 10 Motor data, 11 Output signal variant for reading motor rpm (optional), 12 Brake chopper connections, 14 Burner terminal with INVERTER interface, 16 #### **IDENTIFICAZIONE INVERTER** # INVEOR Mx IVxx PWxx LPxx APxx GHxx DKxx COxx 1/1 2 3 4 5 6 7 8 9 10 | | Key | | Key | |---|---|----|--| | 1 | Drive controller series: INVEOR | 6 | Application circuit board: AP12 - Standard AP13 - CANopen | | 2 | Installation location/size: motor-integrated - M,size: α , A, B, C, D | 7 | Control: DK01 - Standard (without membrane keypad) DK04 – With membrane keypad | | 3 | Input voltage
: IV02 - 230 V | 8 | Housing : GH10 – standard heat sink (black painted) | | 4 | Recommended motor rating : kW: 0.55; 0.75; 1.1; 1.5; 2.2; 3.0; 4.0; 5.5; 7.5; 11.0; 15.0; 18.5; 22.0 | 9 | Firmware version : CO00 - Standard CO01 - Specific | | 5 | Printed circuit boards : LP01 / LP03 – Standard (without brake chopper); LP02 / LP04 – Standard (with brake chopper); | 10 | Equipment generation: 1 – current version | The LMV5x device controls fan motor rpm via a sensor and commands it via the inverter with a 4÷20mA signal. The LMV3x/LMV2x device controls fan motor rpm via a sensor and commands it via the inverter with a 0÷10V signal. Generally, the inverter curve goes from 50% to 100% of motor rpm. As well as improving burner regulation, this allows for a saving in terms of fan motor consumption. #### **INVEOR M INVERTER SIZES** #### User interface #### **COMMUNICATION** (on request) The drive controller can be put in operation in the following ways: Attention: Contact the manufacturer to order the most suitable device. #### USB adaptor for PC #### Via the INVERTER PC software #### INVEOR MMI remote display: INVEOR MMI is a portable
display on which all inverter parameters can be viewed and changed. Manual available on the KOSTAL website. #### Bluetooth connection: Using the Bluetooth adaptor you can connect via app from any device. Download the app for Android / iOS from the Google Play Store / App Store. The Bluetooth adaptor is required to create a Bluetooth connection with the inverter. To view and change the inverter parameters, use an external interface device – tablet or mobile phone. Download the app for Android / iOS from the Google Play Store / App Store. #### **ELECTRICAL CONNECTIONS** ## Motor connection variants for INVERTERS sizes A, B and C Star or delta connection for speed controller integrated on the motor Fig. 1 #### Motor connection variants for INVERTER size D | X1 terminal no. | Designation | Assignment | |-----------------|-------------|----------------------| | 1 | L1 | Mains phase 1 | | 2 | L2 | Mains phase 2 | | 3 | L3 | Mains phase 3 | | 4 | PE | Protective conductor | Tab. 1 - X1 terminal assignment - 3 x 400 VAC | X4 terminal no. | Designation | Assignment | |-----------------|-------------|----------------------| | 1 | PE | Protective conductor | | 2 | U | Mains phase 1 | | 3 | V | Mains phase 2 | | 4 | W | Mains phase 3 | Tab. 2 - X1 terminal assignment - 3 x 400 VAC Fig. 2 - Assembly sequence: Connection box - adapter plate size D #### Key: - 1 Adapter plate option (variant) - 2 Holes depending on motor - 3 Seal - 4 Retaining bolts with spring elements - 5 O-ring seal - 6 INVEOR / adapter plate support - 7 Terminal heightening option - 8 Original terminal (not included) - 9 Extended screw option (for pos.7) - 10 Retaining bolts with spring elements option - 11 INVEOR/support retaining bolts #### Connection of INVERTER signals and commands #### Electrical connections and parameter configuration There are 2 relays on the INVERTER. Connecting terminals X7-1-2-3 and X6-1-2-3 are used for: **LMV2/3x**: Relay 1 is used as a safety contact on the safety loop series of the equipment. Relay 2 is used as a fault indicator on the burner panel front. **LMV5x / ETAMATIC:** Relay 1 is used as a contact for control of fan motor start. Relay 2 is used as a fault indicator of the INVERTER to the LMV5x / ETAMATIC equipment. | Parameter | | | |-----------|--------------------------|--| | 1.181 | Automatic reset function | Automatic reset of faults. The INVERTER resets the fault after the set time. Set value = 30 seconds | | 1.182 | Automatic reset numbers | With the reset function the maximum number of automatic resets can be limited. Set value = 0 (maximum number of automatic resets) | | 4.190 | Relay 1 functions | Select the operating mode of relay 1. Set value = LMV2x/3x= 11 (NC inverted error) Set value = LMV5x / ETAMATIC = 19 (motor is in NO function) | | 4.210 | Relay 2 functions | Select the operating mode of relay 2. Set value = LMV2x/3x= 11 (NC inverted error) Set value = LMV5x / ETAMATIC = 11 (NC inverted error) | | 4.210 | V O operation | Set value = 10 (NO error) | #### 0-10V / 4-20mA analogue input configuration Input Aln1 can be configured as voltage or current input. It is configured as 4-20mA input current for LMV5-Etamatic, and 0-10V input voltage for LMV2x/3x. | | | Specifies the input type, whether voltage or current. | | |--|---|---|--| | 4.020 | Input type AI1 | 1= Voltage input 0-10V (LMV2x/3x) | | | | | 2= Current input 0/4-20mA (LMV5 ETAMATIC) | | | | | Specifies the minimum value of the analogue input as a percentage of the range. | | | | | E.g.: | | | 4.021 | Al1 Standard low | 010 V or 020 mA = 0 %100 % | | | | | 210 V or 420 mA = 20 %100 % | | | | | Set value = 20% for LMV2x/3x, LMV5x, ETAMATIC | | | | | Specifies the maximum value of the analogue input as a percentage of the range at 10V or 20mA. | | | 4.022 | Al1 Standard high | Set value = 100% | | | | | | | | 4.023 | Al1 Response time | Specifies the deadband on the input signal. Set value = 1% | | | | | An input change is taken into consideration after this time. If it is too short, a wire | | | 4.024 | Al1 Filter time | break error may appear if the 4-20 mA signal goes to 0 for a short time. | | | 4.024 | All Filler lille | Set value = 4 seconds | | | | | Specifies whether the input is 0 = analogue / 1 = digital input. | | | 4.030 | Al1 Input function | Set value = 0 analogue | | | 4.033 | Al1 Measure unit, input 1 | Specifies the unit of measurement of input 1. | | | 4.033 | Air Measure unit, input i | Set value = 0 (%) | | | 4.034 | Al1 Lower limit | Specifies the lower limit of input 1. | | | | 7 ti 1 20 ti 0 ti 1 ti 1 ti 1 ti 1 ti 1 ti 1 ti | Set value = 0 (%) | | | 4.035 | Al1 Upper limit | Specifies the upper limit of input 1. | | | | | Set value = 100 (%) | | | 4.036 | Al1 Wire break time, 5s | Specifies the time after which the fault appears if input Al1 is interrupted (wire break). Set value = 5 seconds | | | 4.000 | All wile bleak tille, 35 | Get value – O Secolius | | | 4.007 | Ald lavaraian | Inverts the signal of input 1. | | | 4.037 Al1 Inversion Set value = 0 (disabled) | | · | | ## Configuration of control contact / INVERTER starting and stopping | Terminal | | |--|---| | X5-3 (24V Out) X5-6 (Digit In1) | Bringing 24V to terminal X5-6 enables INVERTER operation and the contact that switches it on/off. On LMV2/3x X5-3 (24V Out) also powers the motor speed encoder. | | X5-5 (24V Out) connected with X5-10 (En.HW) | Required to enable braking ramp xxxx | ## Configuration of INVERTER start / stop parameters and operating mode | Parame | ter | | | |--------|-------------------------------|--|--| | 1.020 | Min. frequency (Hz) | Minimum input frequency in Hz. Set value = 0 Hz (LMV2x-3x / LMV5x) Set value = > 35 Hz (ETAMATIC) | | | 1.021 | Max. frequency (Hz) | Maximum input frequency in Hz. Set value = 51,5 Hz (LMV2x-3x / LMV5x) Set value = 50 Hz (ETAMATIC) | | | 1.050 | Ramp 1
Braking time 1 | Braking time at switch-off to reach the speed of 0 Hz after the start/stop contact has opened (not used). Set value = 10 seconds | | | 1.051 | Ramp 1
Acceleration time 1 | Acceleration time 1 is the time necessary for the drive controller to accelerate from 0 Hz to maximum frequency (not used). Set value = 10 seconds | | | 1.052 | Ramp 2
Braking time 2 | Braking time at switch-off to reach the speed of 0 Hz after the start/stop contact has opened. Set value = 10 seconds | | | 1.053 | Ramp 2
Acceleration time 2 | Acceleration time 2 is the time necessary for the drive controller to accelerate from 0 Hz to maximum frequency. Set value = 10 seconds | | | 1.054 | Selects ramp used | Digital input 1 (dig In1 / X5-6) selects the ramp used. Set value = 1 (parameters 1.052 and 1.053) | | | 1.088 | Quick stop | Not used but set. Set value = 10 seconds | | | 1.100 | Operating mode | Frequency control mode: specifies the operating mode of the INVERTER. In our case it is always frequency control (0). Set value = 0 | | | 1.130 | Reference set point | Determines the source from which the reference value is read. In our case it is always analogue input Al1. Set value = 1 (analogue input 1) | | | 1.131 | Enabling software | Depending on the change made, the motor may start immediately. Selection of the source for enabling control. Set value = 0 | | | 1.132 | Start-up protection | Selection of behaviour in response to enabling software. Set value = 1 (Start only with rising edge at input of control enable) | | | 1.150 | Motor rotation direction | Do not change this parameter. To invert the direction of rotation, invert 2 of the 3 INVERTER / MOTOR cabling wires, so that the INVERTERS always have the same setting. Set value = 1 forwards only / clockwise rotation | | | | | (no changes to direction of rotation are possible) | | #### Motor data The motor data depend on the type of motor used. Refer to the data shown on the motor nameplate. Follow the steps below: - Enter the motor data; - Activate the motor recognition function; - If the operation ends successfully, enter the remaining parameters. During the recognition phase, the INVERTER measures some parameters and changes some settings. N.B.: At each start-up of the recognition programme, recheck all the parameters in this manual. | Parame | Parameter | | | |--------|-------------------------------|---|--| | 33.001 | Motor type | Selection of motor type. Set value = 1 (asynchronous motor) | | | 33.010 | Motor I ² t factor | Not used. Only for encoders. Set value = 100% | | | 33.011 | I ² t time | Not used. Only for encoders Set value = 30 seconds | | | 33.015 | R optimisation | If necessary, this parameter can be used to optimise the start-up behaviour. Not used Set value = 100% | | | 33.016 | Motor phase control | The "Motor connection interrupted" error monitoring (error 45) can be enabled/disabled with this parameter. Set value = 1 (enabled control) | | | 33.031 | Motor current | Maximum motor current. Set value = motor nameplate current value in amps | | | 33.032 | Motor rating | Motor shaft rating. Set value =
motor nameplate rating value in watts | | | 33.034 | Motor rpm | Motor rpm. Set value = motor nameplate speed in rpm | | | 33.035 | Motor frequency | Nominal motor frequency. Set value = motor nameplate frequency in Hz | | | 33.050 | Stator resistance | Recognised by INVERTER. Set value = automatically detected, value in Ohm | | | 33.105 | Leakage inductance | Recognised by INVERTER. Set value = automatically detected, value in henry | | | 33.110 | Motor voltage | Nominal motor voltage. Set value = 400V | | | 33.111 | Motor cos phi | Data on motor nameplate. Set value = 0,xx | | | 33.138 | Holding current time | Needed to stop the motor!! After braking it is held at continuous current for a specified time interval. Ensure that there is no overheating in this phase. Recommended time: max 5 s. Set value = 0 seconds | | Activate the "Motor identification" function and follow the instructions proposed by the INVERTER, then change the parameters described below. The image shows the software screen on the PC. | Parame | ter | | |--------|---------------------------------|--| | 34.010 | Control type | Open-loop asynchronous motor. Set value = 100 (open-loop asynchronous motor) | | 34.020 | Flying restart | Set value = 1 (enabled) | | 34.021 | Flying restart time | Calculated by Inverter. Set value = value calculated by INVERTER in ms | | 34.090 | Speed controller K _P | Calculated by the inverter during the motor recognition phase. Reset it to 2000 after motor recognition. Set value = 2000 mA/rad/sec | | 34.091 | Speed controller TN | Calculated by the inverter during the motor recognition phase. Reset it to 7.5 seconds after motor recognition. Set value = 7.5 seconds | | 34.110 | Slip trimmer | If set to 1 the function is enabled. If set to 0 the motor performs as if connected to the mains. If compensation is enabled, the system aligns the stator frequency with the rotor. As a result, the actual motor rpm increase and are brought in line with the theoretical motor nameplate rpm. The motor is supplied with the same voltage and frequency, but the current increases and the rpm are brought to the nameplate data. Set value = 1 (compensation for slippage) | #### Output signal variant for reading motor rpm (optional) To have a 4-20 mA analogue output that indicates the motor rpm to the terminals X5-13 (Aout 0-20 mA) and X5-16 (A GND), set the parameters below: | Param | Parameter | | | |-------|--------------------------------------|--|--| | 4.100 | Analogue output AO1 | Selection of analogue output options. In our case, to have an output proportional to the rpm, set 19. Set value = 19 (actual rpm) | | | 4.101 | Minimum value of analogue output AO1 | Output signal at 0-20 mA. To obtain a 4-20 mA signal with (4 mA = 0 motor rpm), follow the example: if motor rpm are a maximum 2900, calculate: 2900 / 20 x 4 = 580 , which is the negative value corresponding to 0 mA from which to start. Therefore: 0 mA = -580, 20 mA = 2900 Set value = - xxx (-580 in the example) | | | 4.102 | Maximum value of analogue output AO1 | Maximum rpm value for 20 mA. Set value = xxxx (2900 in the above example) | | | NOTE
1 | If the system enters pendulum mode with LMV / ETAMATIC, adjust parameters 34.090 and 34.091 by increasing them, in particular parameter 34.090 , in steps of 100mA/rad/sec. | | |-----------|---|--| | NOTE
2 | With LMV 2x/3x with INVERTER control, the device controls the standby rpm with param. 653 . If, after the fan is switched off, the device LMV 2x/3x sees that the motor continues to run, error 83 diagnostic 32 appears. This occurs if there is significant fan inertia (e.g. on burners with very heavy forward curved blades), then always disable parameter 653, setting it to 0 . | | | NOTE
3 | With LMV 2x/3x the signal 0-10V for motor rpm control during standardisation is brought to approximately 9.7 V and the fan motor rpm is saved. According to the LMV manual, the INVERTER should be set to max 52.5 Hz During standardisation, the INVERTER is driven at approximately 51 ÷ 51.5 Hz and may go out of absorption range with the motor. For this reason, set the INVERTER to max 51.5 Hz. During standardisation, the INVERTER will reach 50Hz and the over-absorption problem will be reduced. | | | NOTE
4 | If the <u>analogue wire break fault</u> is displayed on the INVERTER and the 4-20 mA inverter signal continues to oscillate between 1 ÷ 6 mA, it does not always mean that the LMV 2x/3x or ETAMATIC equipment is faulty. It could be due to the old firmware of the INVERTER and should therefore be updated. If this is the case, contact the Service Centre. | | | FAULTS / PROBLEMS SOLUTIONS | | | |-----------------------------|---|---| | Parameter 36.020 | If error 36 appears | Problems detected in the mains supply. By setting this parameter to 0, the INVERTER no longer checks the mains and the error message disappears. It is recommended to leave the parameter set to 1. | | Parameter 33.105 | If mains voltage drops during operation | When the mains voltage drops, the INVERTER decreases the motor rpm. To reduce this change, set the parameter to 0, which should solve the problem. | ## Brake chopper connections #### Brake chopper connections | Terminal no. | Designation | Assignment | |--------------|-------------|---------------------------------| | 1 | B+ | Braking resistor connection (+) | | 2 | B- | Braking resistor connection (-) | #### Optional assignment of brake chopper | Parameter | | |------------------|---------------------| | Braking resistor | Enabled or disabled | #### Burner terminal block with interface INVERTER #### Versioni bruciatore con LMV2x/3x #### Versioni bruciatore con LMV5x o ETAMATIC C.I.B. UNIGAS S.p.A. Via L.Galvani, 9 - 35011 Campodarsego (PD) - ITALY Tel. +39 049 9200944 - Fax +39 049 9200945/9201269 web site: www.cibunigas.it - e-mail: cibunigas@cibunigas.it Note: specifications and data subject to change. Errors and omissions excepted. # MANUAL DE AYUDA MULTITERMOSTATO MCX06C La herramienta MCX06C es un multitermostato que ofrece la posibilidad de conectar hasta 4 sondas NTC de tipo 100k y controlar hasta 4 temperaturas al mismo tiempo 2 de las cuales pueden visualizarse en 2 displays. El dispositivo se utiliza para regular y controlar las temperaturas de los racores de precalentamiento del aceite con el siguiente ciclo de funcionamiento: Cuando el ciclo del quemador da la autorización a la entrada digital 1 (terminales DI1-COM), el programa de regulación está activado (véase también led "Programa de regulación activado") Con la sonda **Pb3** (terminales AI3-COM) se controla la temperatura de salida del aceite combustible del racor de precalentamiento generando una señal PID que, a su vez, se convierte en el set-point de temperatura de las resistencias eléctricas que calientan el racor. La temperatura en las resistencias la controla una sonda **Pb1** (terminales AI1-COM). De esta manera se genera una segunda señal PID que dirige mediante impulsos 0/10 V los grupos estáticos de potencia (tiristores), controlando las resistencias eléctricas del racor de precalentamiento. En los momentos en los que el quemador se mantiene en parada, las resistencias trabajan con un set-point fijo configurable con el parámetro "p30" del grupo de parámetros REG . La sonda **Pb4**, acoplada en la entrada Al4 (terminales Al4-COM) controla la temperatura en el interior del racor: una vez alcanzado el valor de set-point correspondiente, controla la salida 4 (terminales C4-NO4) conectada al relé auxiliar KTCN que autoriza al quemador a poner en funcionamiento la bomba y a iniciar el ciclo del quemador. Si la temperatura del aceite combustible del racor alcanzase y superase el valor configurado con el set-point **trS** se activa la salida 5 (terminales C5-NO5) conectada con el relé auxiliar KTRS, que asegura las resistencias del precalentador y hace saltar la alarma de la herramienta. Por el contrario, la sonda **Pb2**, acoplada a la entrada Al2 (terminales Al2-COM), si está presente, se encuentra acoplada a la salida 2 (terminales C2-NO2) conectada al relé auxiliar KTCI, que da la autorización al quemador, una vez alcanzada la temperatura mínima, para proceder al encendido; véase la tabla de ajustes del set-point. #### Interfaz de usuario: #### Nota: En funcionamiento normal el display A muestra el valor de la temperatura de las resistencias del racor (sonda Pb1). En funcionamiento normal
el display B muestra el valor de la temperatura de salida del racor (sonda Pb3). #### Conexión de sondas: entrada Al1 = sonda Pb1 = set-point "tr" = sonda temperatura resistencias racor; entrada Al2 = sonda Pb2 = set-point "tCl" = sonda temperatura autorización instalación; (donde se encuentre, quemadores con retorno nafta a la instalación); entrada Al3 = sonda Pb3 = set-point "OlL" = sonda de temperatura de salida nafta desde el racor (regulación PID); entrada Al4 = sonda Pb4 = set-point "tcn" = sonda de temperatura autorización nafta desde el racor. (sonda tCl - Pb2 solo para quemadores por pulverización mecánica) **Menú:**Pulsando el botón **ENTER** durante 3 segundos se accede al menú que se describe a continuación. | Código de | Código de | Función | Notas | |-------------|----------------|-------------------------------------|--| | opción menú | opción submenú | | | | Prb | | Visualización de los valores de las | Se visualiza la secuencia de valores (botones | | | | sondas | UP y DOWN) de las cuatro sondas: sigla sondas | | | | | en el display A (Pb1,Pb4) y valores de | | | | | temperatura en el display B (las sondas que no | | | | | están presentes o que se encuentran en | | 1 | | A | situación de alarma se indican con) | | Log | | Acceso | Nivel de acceso a los parámetros (contraseña) | | Par | | Menú parámetros | Acceso a los parámetros (en función del nivel de | | | | | contraseña de acceso) | | | PAS | Contraseña | Introducir contraseña | | | CnF | Configuración | Configuración de parámetros | | | rEG | Menú ajustes | Ajuste del set-point de las sondas, umbrales, etc. | | ALA | | Menú alarmas | Acceso a la gestión de alarmas | | | Act | Alarmas activas | Visualización de alarmas activas | | | rES | Reinicio alarmas | Reinicio de las alarmas mediante reactivación | | | | | manual | | Loc | | Función de bloqueo/desbloqueo | No utilizada | | | | de la herramienta | | | InF | rEL | Versión del software | Versión del software instalado | | tUN | | Ajuste automático | Activación On, desactivación ESC ajuste | | | | | automático PID de regulación | #### Acceso: Todos los parámetros del menú **Par** están protegidos con contraseña y, por lo tanto, no son visibles y no pueden modificarse. Los únicos parámetros configurables, sin contraseña, se encuentran dentro del menú **rEG** y son los valores de setpoint de trabajo. Para acceder a todos los ajustes de la herramienta, desde **Log** es necesario pulsar **ENTER** y en **PAS** se introduce la contraseña del nivel asignado (contraseña de nivel 2 o de nivel 3). PS: la contraseña de nivel 3 permite acceder y, en su caso, modificar todos los parámetros. ## Submenú CnF - grupo parámetros configuración: | Menú | Parámetro | Descripción | Descripción adicional | Mín. | Máx. | Por defecto | U.M. | Situación
Visibilidad | Nivel | Índice
Modbus | |----------|-----------|---|---|--------|-------|-------------|----------|--------------------------|-------|------------------| | CnF | | CONFIGURACIÓN | | | | | | | 0 | | | Al1 | | Entrada Analógica 1 | | | | | | | 1 | | | AH | A1P | Presencia Sonda 1 | El parámetro activa o desactiva la sonda | 0 | 1 | 1 | | | 2 | 1 | | | A1C | Calibración Sonda 1 | | -20.0 | 20,0 | 0,0 | °C | A1P >0 | 3 | 2 | | Al2 | AIC | | No modificar este parámetro | -20,0 | 20,0 | 0,0 | <u> </u> | AIF 20 | 1 | | | AIZ | A2P | Entrada Analógica 2 | El mantacata a chica a de catica la canda | 0 | 4 | 4 | | | | 0 | | | | Presencia Sonda 2 | El parámetro activa o desactiva la sonda | 0 | 1 | 1 | 0.0 | 400.0 | 2 | 3 | | 410 | A2C | Calibración Sonda 2 | No modificar este parámetro | -20,0 | 20,0 | 0,0 | ° C | A2P >0 | 3 | 4 | | Al3 | | Entrada Analógica 3 | | | | | | | 1 | _ | | | A3P | Presencia Sonda 3 | El parámetro activa o desactiva la sonda | 0 | 4 | 1 | | | 2 | 5 | | | A3L | Val. de conversión Mínimo
Al3 | No modificar este parámetro | -999,9 | 999,9 | 0,0 | | A3P >2 | 3 | 6 | | | A3H | Val. de conversión Máximo
Al3 | No modificar este parámetro | -999,9 | 999,9 | 30,0 | | A3P >2 | 3 | 7 | | | A3C | Calibración Sonda 3 | No modificar este parámetro | -20,0 | 20,0 | 0,0 | °C | A3P >0 | 3 | 8 | | Al4 | | Entrada Analógica 4 | , | | ĺ | , | | | 1 | | | | A4P | Presencia Sonda 4 | El parámetro activa o desactiva la sonda | 0 | 4 | 1 | | | 2 | 9 | | | A4L | Val. de conversión Mínimo
Al4 | No modificar este parámetro | -999,9 | 999,9 | 0,0 | | A4P >2 | 3 | 10 | | | A4H | Val. de conversión Máximo
Al4 | No modificar este parámetro | -999,9 | 999,9 | 30,0 | | A4P >2 | 3 | 11 | | | A4C | Calibración Sonda 4 | No modificar este parámetro | -20,0 | 20,0 | 0,0 | °C | A4P >0 | 3 | 12 | | dl | | Entradas Digitales | ' | | , | , | | | 1 | | | | dl1 | Polaridad entrada 1 Bomba | Cambia el tipo de entrada digital (NC o NO) | 0 | 1 | 1 | | | 3 | 13 | | | dl2 | Polaridad alarmas de entrada 2 | Cambia el tipo de entrada digital (NC o NO) | 0 | 2 | 2 | | | 2 | 14 | | | dl3 | Polaridad alarmas de entrada 3 | Cambia el tipo de entrada digital (NC o NO) | 0 | 2 | 2 | | | 2 | 15 | | | dl4 | Polaridad alarmas de entrada 4 | Cambia el tipo de entrada digital (NC o NO) | 0 | 2 | 2 | | | 2 | 16 | | | dl5 | Polaridad alarmas de entrada 5 | Cambia el tipo de entrada digital (NC o NO) | 0 | 2 | 2 | | | 2 | 17 | | | dl6 | Polaridad alarmas de entrada 6 | Cambia el tipo de entrada digital (NC o NO) | 0 | 2 | 2 | | | 2 | 18 | | dl | dio | Salidas Digitales Alarmas y Advertencias | Cambia et tipo de entrada digital (NC 0 NO) | 0 | 2 | 2 | | | 1 | 10 | | <u> </u> | dO5 | Polaridad salida Advertencias | Cambia el tipo de entrada digital (NC o NO) | 0 | 1 | 0 | | | 3 | 19 | | | dO6 | Polaridad salida Alarmas | Cambia el tipo de entrada digital (NC o NO) | 0 | 1 | 0 | | | 3 | 20 | | SIC | 400 | Sonda de seguridad | Cambia el tipo de critidada digital (140 e 140) | | ' | 0 | | | 1 | 20 | | 310 | Slp | Selección de sonda de seguridad | Sonda que ordena también la activación del relé de Advertencias (ns. KTRS) | 0 | 4 | 4 | | | 3 | 21 | | SyS | ОТР | Sistema | Tele de Advertericias (ris. 10110) | | 7 | 4 | | | 0 | 21 | | ЗуЗ | 1 | Sistema | Visualización de la temperatura de la sonda | | | | | | U | | | | dSA | Visualización display A | o set-point en el display de la izquierda | 0 | 8 | 1 | | | 3 | 22 | | | dSb | Visualización display B | Visualización de la temperatura de la sonda o set-point en el display de la derecha | 0 | 8 | 3 | | | 3 | 23 | | PAS | | Contraseña | | | | | | | 1 | | | | PL1 | Contraseña Nivel 1 | | 0 | 9999 | 0 | | | 1 | 32 | | | PL2 | Contraseña Nivel 2 | | 0 | 9999 | | | | 2 | 33 | | | PL3 | Contraseña Nivel 3 | | 0 | 9999 | | | | 3 | 34 | | Menú | Parámetro | Descripción | Descripción adicional | Mín. | Máx. | Por defecto | U.M. | Situación
Visibilidad | Nivel | Índice
Modbus | |------|-----------|---|-----------------------------|------|-------|-------------|------|--------------------------|-------|------------------| | tUN | | Ajuste automático | | | | | | | 3 | | | | | Histéresis temperatura de | No modificar este parámetro | | | | | | | | | | tU1 | salida | · | 0 | 50,0 | 0,5 | ° C | | 3 | 35 | | | tU2 | Número de ciclos de arranque | No modificar este parámetro | 0 | 5 | 2 | | | 3 | 36 | | | tU3 | Número de ciclos de medición | No modificar este parámetro | 1 | 4 | 2 | | | 3 | 37 | | | tU4 | Diferencial máx. del comando de salida | No modificar este parámetro | 0,01 | 10,00 | 10,00 | V | | 3 | 38 | | | tU5 | Reducción del diferencial del comando de salida (%) | No modificar este parámetro | 0 | 100 | 15 | | | 3 | 39 | | | tU6 | Modo cálculo:
0=Sim.;1=Asim.; 2=Simple | No modificar este parámetro | 0 | 2 | 2 | | | 3 | 40 | | | tU7 | Habilitación | No modificar este parámetro | 0 | 1 | 1 | | | 3 | 41 | ## Submenú **REG – grupo parámetros ajustes:** | Menú | Parámetro | Descripción | Descripción adicional | Mín. | Máx. | Por defecto | U.M. | Situación
Visibilidad | Nivel | Índice
Modbus | |------|-----------|--|---|---------|--------|--------------|--------|--------------------------|-------|------------------| | REG | Tarametro | AJUSTES | Descripcion adicional | 141111. | Wux. | 1 of defeoto | 0.111. | Violomaaa | 0 | Moubus | | Pb1 | | Sonda 1 | | | | | | | 0 | | | | | Set-point Sonda 1 | No modificar este parámetro | | | | | | | | | | rES | (resistencias) | · | -50,0 | 200,0 | 0,0 | °C | | 3 | 42 | | | | Umbral de Alarma Baja Temperatura | No modificar este parámetro | | | | | | | | | | AL1 | Sonda 1 | | -50,0 | 200,0 | -50,0 | ° C | | 3 | 43 | | | | Umbral de Alarma Alta Temperatura | No modificar este parámetro | | | | | | | | | | AH1 | Sonda 1 | | -50,0 | 200,0 | 200,0 | ° C | | 3 | 44 | | | d01 | Diferencial Sonda 1 | | 0,0 | 20,0 | 3,0 | °C | | 3 | 45 | | Pb2 | | Sonda 2 | | | | | | | 0 | | | | | Out we should be a | Autorización instalación conforme a la | | | | | | | | | | 401 | Set-point Sonda 2 | tabla "Ajuste del set-point de | 50.0 | 200.0 | 400.0 | l ∘ c | | 0 | 46 | | | tCI | (Autorización instalación) | trabajo de las sondas" | -50,0 | 200,0 | 120,0 | L C | | 0 | 46 | | | AL2 | Umbral de Alarma Baja Temperatura
Sonda 2 | No modificar este parámetro | -50.0 | 200,0 | -50.0 | l ∘ c | | 2 | 47 | | | ALZ | Umbral de Alarma Alta Temperatura | No modificar este parámetro | -50,0 | 200,0 | -50,0 | | | | 47 | | | AH2 | Sonda 2 | No modifical este parametro | -50,0 | 200,0 | 200,0 | l ∘ c | | 2 | 48 | | | d02 | Diferencial Sonda 2 | | 0,0 | 20,0 | 3,0 | °C | | 2 | 49 | | Pb3 | | Sonda 3 | | 0,0 | 20,0 | 0,0 | | | 0 | | | | | Tipo de regulación en la sonda 3 | Tipo de ajuste | | | | | | | | | | rE3 | (Salida racor) | 0= termostato 1= PID no modificar | 0 | 1 | 1 | | | 3 | 50 | | | | | Set-point temperatura de la
boquilla | | | | | | | | | | | | conforme a la tabla "Ajuste del set-point | | | | | | | | | | | | de | | | | | | | | | | OIL | Set-point Sonda 3 (Salida racor) | trabajo de las sondas" | -50,0 | 200,0 | 130,0 | ° C | | 0 | 51 | | | 1 1 2 | Umbral de Baja Sonda 3 | No modificar este parámetro | 50.0 | 200.0 | 50.0 | °C | | | | | | AL3 | (Salida racor) Umbral de Alta Sonda 3 | No modificar acta parámetra | -50,0 | 200,0 | -50,0 | C | | 2 | 52 | | | AH3 | (Salida racor) | No modificar este parámetro | -50,0 | 200,0 | 200,0 | °c | | 2 | 53 | | | VIII | Banda proporcional PID Sonda 3 | Banda proporcional relativa al I° PID | -50,0 | 200,0 | 200,0 | | | | 33 | | | Pb3 | (Salida racor) | | 0.0 | 200,0 | 60.0 | | | 3 | 54 | | | 1 50 | Zona muerta PID Sonda 3 | Zona muerta relativa al I° PID | 0,0 | 200,0 | 00,0 | | | 3 | J-7 | | | db3 | (Salida racor) | Zona maoria rolativa ari 1 ib | 0.0 | 20.0 | 0.0 | °C | rE3 =1 | 3 | 55 | | | | Tiempo Integral (Ti) PID Sonda 3 | Tiempo integral relativo al I° PID | -,- | | -,- | | .=• . | | | | | rt3 | (Salida racor) | ,g | 0,0 | 1000,0 | 120,0 | S | rE3 =1 | 3 | 56 | | | | Tiempo Derivada (Td) PID Sonda 3 | Tiempo derivativo relativo al I° PID | | | | | | | | | | dt3 | (Salida racor) | (~ ¼ de rt3) | 0,0 | 300,0 | 30,0 | s | rE3 =1 | 3 | 57 | | Menú | Parámetro | Descripción | Descripción adicional | Mín. | Máx. | Por defecto | U.M. | Situación
Visibilidad | Nivel | Índice
Modbus | |--------|-----------|--|---|-------|--------|--------------|--------|--------------------------|---------------------------------------|------------------| | Wichia | Tarametro | Rebasamiento Acción Integral | No modificar este parámetro | | IIIUX. | 1 or acreate | 0.111. | Violomada | 141701 | Modbas | | | pi1 | (Salida racor) | The meanical sole parameter | 100 | 1000 | 200 | | rE3 =1 | 3 | 58 | | | F | Habilitación acción derivativa (Salida | No modificar este parámetro | | | | | | | | | | pi2 | racor) | ' | 0 | 1 | 1 | | rE3 =1 | 3 | 59 | | | | Factor de filtración por acción | No modificar este parámetro | | | | | | | | | | pi3 | derivativa (Salida racor) | · | 1 | 100 | 20 | | rE3 =1 | 3 | 60 | | | | Tiempo de ciclo PWM largo salida | No modificar este parámetro | | | | | | | | | | pi4 | DO3 y/o AO1 (0-10 V) | | 1 | 300 | 5 | S | rE3 =1 | 3 | 61 | | | | Seleccionar Salida DO3 y/o AO1 | Seleccionar salida digital por comando | | | | | | | | | | SL3 | (0-10 V) | tiristores No modificar este parámetro | 0 | 2 | AO1 | | | 3 | 62 | | | | Banda proporcional PID Sonda 1 | Banda proporcional relativa al II° PID | | | | | | | | | | p21 | (Resistencia) | | 0,0 | 200,0 | 50,0 | | rE3 =1 | 3 | 63 | | | 00 | Zona muerta PID Sonda 1 | Zona muerta relativa al II° PID | | 00.0 | | 0.0 | 50 4 | | 0.4 | | | p22 | (Resistencia) | T: : : : : : : : : : : : : : : : : : : | 0,0 | 20,0 | 0,0 | ° C | rE3 =1 | 3 | 64 | | | , non | Tiempo Integral (Ti) PID Sonda 1 (Resistencia) | Tiempo integral relativo al II° PID | 0.0 | 1000.0 | 110.0 | | rE3 =1 | | GE. | | | p23 | Tiempo Derivada (Td) PID Sonda 1 | Tiempo derivativo relativo al II° PID | 0,0 | 1000,0 | 110,0 | S | TE3 = 1 | 3 | 65 | | | p24 | (Resistencia) | Thempo derivativo relativo al II-PID | 0.0 | 300.0 | 23.0 | s | rE3 =1 | 3 | 66 | | | μ24 | Rebasamiento Acción Integral | No modificar este parámetro | 0,0 | 300,0 | 23,0 | 5 | 153 - 1 | 3 | 00 | | | p25 | (Resistencia) | No modifical este parametro | 100 | 1000 | 200 | | rE3 =1 | 3 | 67 | | | μ25 | Habilitación acción derivativa | No modificar este parámetro | 100 | 1000 | 200 | | 123-1 | , , , , , , , , , , , , , , , , , , , | 07 | | | p26 | (Resistencia) | 140 modifical este parametro | 0 | 1 | 1 | | rE3 =1 | 3 | 68 | | | PEO | Factor de filtración por acción | No modificar este parámetro | - | • | • | | 120 1 | | - 00 | | | p27 | derivativa (Resistencia) | The meanical sole parameter | 1 | 100 | 20 | | rE3 =1 | 3 | 69 | | | P=- | Mín. OUT PID Sonda 3 | Valor mínimo de set-point resistencias | | | | | v . | | | | | p28 | (Salida racor) | (delta de 100°C con respecto a p29) | 0.0 | 1000,0 | 80.0 | ° C | rE3 =1 | 3 | 70 | | | 1 | Máx. OUT PÍD Sonda 3 | Valor máximo de set-point resistencias | | , | ŕ | | | | | | | p29 | (Salida racor) | · | 0,0 | 1000,0 | 180,0 | ° C | rE3 =1 | 3 | 71 | | | | Set-point Resistencia con bomba | Set-point de mantenimiento en parada de | | | | | | | | | | SP0 | parada | las resistencias con quemador | -50,0 | 200,0 | 140,0 | ° C | rE3 =1 | 0 | 72 | | Pb4 | | Sonda 4 | | | | | | | 0 | | | | | | Autorización aceite conforme a la tabla | | | | | | | | | | | Set-point Sonda 4 | "Ajuste del set-point de | | | | | | | | | | tcn | (Autorización aceite) | trabajo de las sondas" | -50,0 | 200,0 | 110,0 | ° C | | 0 | 73 | | | AL4 | Umbral de Baja Sonda 4 | | -50,0 | 200,0 | -50,0 | ° C | | 2 | 74 | | | | | Temperatura de seguridad de las | | | | | | | | | | | Harbard de Alta Carada 4 (Tar | resistencias conforme a la tabla | | | | | | | | | | 4mC | Umbral de Alta Sonda 4 (Termostato | "Ajuste del set-point de | 50.0 | 200.0 | 100.0 | ° C | | 0 | 75 | | | trS | de seguridad) | trabajo de las sondas" | -50,0 | 200,0 | 190,0 | ° C | | 0 | 75 | | 1 | d04 | Diferencial Sonda 4 | | 0,0 | 20,0 | 3,0 | °C | | 2 | 76 | #### **Alarmas y Avisos:** Cuando la herramienta muestra el <u>triángulo rojo</u> arriba a la izquierda, significa que se han activado una o más alarmas. Cuando la herramienta muestra la <u>llave roja</u>, significa que se ha activado la salida N05-C5 con el relé **KTRS** que apaga las resistencias. Verificar el motivo y una vez que la temperatura vuelva a descender por debajo del valor de **trS** reiniciar con ALA/rES. Para visualizar las alarmas y los avisos activos seleccionar la opción de menú **ALA/Act**. Con los botones **UP** y **DOWN** se desplazan las alarmas o avisos activos presentes. Para reiniciar las alarmas y los avisos de reactivación manual seleccionar ALA/rES. | Código | Descripción | Fuente | Símbolo activo | Tipo de reactivación | |--------|-------------------------------|-----------------------|----------------|----------------------| | trS | Alta temperatura resistencias | sonda Pb4 > valor trS | llave roja | Manual | | EP1 | Sonda Pb1 averiada | Sonda Pb1 averiada | triángulo rojo | Automático | | EP2 | Sonda Pb2 averiada | Sonda Pb2 averiada | triángulo rojo | Automático | | EP3 | Sonda Pb3 averiada | Sonda Pb3 averiada | triángulo rojo | Automático | | EP4 | Sonda Pb4 averiada | Sonda Pb4 averiada | triángulo rojo | Automático | #### Ajuste del set-point de trabajo de las sondas: Todos los parámetros del menú **Par** están protegidos con contraseña y, por lo tanto, no son visibles y no pueden modificarse. Los únicos parámetros configurables se encuentran dentro del menú **rEG** y son los valores de set-point de trabajo. Los valores de temperatura recomendables son: | Dut | Ruta del menú | | Sigla del combustible | Viscosidad del aceite combustible a 50 °C | | | | | | | |------|---------------|-----|---|---|------------|-----------------|------------|------------|--|--| | Ruta | | | en el modelo | P N | | E | D | Н | | | | | | | | 89 cSt | < 50 cSt | > 50 cSt | > 110 cSt | > 400 cSt | | | | | | | | | | < 110 cSt | < 400 cSt | < 4000 cSt | | | | | | | | 12 °E | < 7°E | > 7 °E | > 15 °E | > 50 °E | | | | | | | | | | < 15 °E | < 50 °E | < 530 °E | | | | Par | | | | | | | | | | | | rEG | Pb1 | tr | temperatura resistencias racor | | paı | rámetro no visi | ible | | | | | | Pb2 | tCI | temperatura de
autorización de la
instalación (retorno)
cuando esté presente | 20 °C | 70 °C | 70 °C | 70 °C | | | | | | Pb3 | Oil | Temperatura de salida
del aceite desde el
racor | 60-70 °C | 110-120 °C | 120-130 °C | 130-140 °C | 140-150 °C | | | | | | SP0 | Set-point resistencias
con bomba parada
(stand-by) | 45 °C | 120 °C | 130 °C | 140 °C | 150 °C | | | | | Pb4 | tcn | temperatura de
autorización del aceite
(inicio autorización
encendido del
quemador) | 40 °C | 100 °C | 100 °C | 110 °C | 120 °C | | | | | | trS | temperatura de
seguridad del racor
(mediante reactivación
manual) | 120 °C | 190-200 °C | 190-200 °C | 190-200 °C | 190-200 °C | | | Los valores de temperatura son recomendados y se refieren a una instalación construida conforme a las especificaciones que figuran en los manuales. Los valores sugeridos pueden variar en función de las características del aceite combustible.