

TP1030 TP1050 TP1080

Bruciatori di gas a controllo elettronico (LMV5x)

MANUALE DI INSTALLAZIONE - USO - MANUTENZIONE

CIB UNIGAS

BURNERS - BRUCIATORI - BRULERS - BRENNER - QUEMADORES - ГОРЕЛКИ

PERICOLI, AVVERTENZE E NOTE DI ATTENZIONE

IL MANUALE DI INSTALLAZIONE, USO E MANUTENZIONE COSTITUISCE PARTE INTEGRANTE ED ESSENZIALE DEL PRODOTTO E DEVE ESSERE CONSEGNATO ALL'UTILIZZATORE.

LE AVVERTENZE CONTENUTE IN QUESTO CAPITOLO SONO DEDICATE SIA ALL'UTILIZZATORE CHE AL PERSONALE CHE CURERA' L'INSTALLAZIONE E LA MANUTENZIONE DEL PRODOTTO.

L'UTILIZZATORE TROVERA' ULTERIORI INFORMAZIONI SUL FUNZIONAMENTO E SULLE LIMITAZIONI D'USO NELLA 2ª PARTE DI QUESTO MANUALE CHE RACCOMANDIAMO DI LEGGERE CON ATTENZIONE.

CONSERVARE CON CURA IL PRESENTE MANUALE PER OGNI ULTERIORE CONSULTAZIONE.

Quanto di seguito riportato:

- presuppone la presa visione ed accettazione da parte del Cliente delle Condizioni Generali di Vendita dell'azienda. in vigore alla data di conferma d'ordine e consultabili in appendice ai Listini aggiornati.
- è destinato in via esclusiva ad utenza specializzata, avvertita ed istruita. In grado operare in condizioni di sicurezza per le persone, per il
 dispositivo e per l'ambiente. Nel pieno rispetto delle prescrizioni
 oggetto delle pagine a seguire e delle norme di sicurezza e salute
 vigenti.

Le informazioni riguardanti assiemaggio/installazione, manutenzione, sostituzione e ripristino, sono destinate - e quindi eseguibili - sempre ed in via esclusiva da Personale specializzato e/o direttamente dall'Assistenza Tecnica Autorizzata.

IMPORTANTE:

La fornitura è stata realizzata alle migliori condizioni su base ordine ed indicazioni tecniche del Cliente concernenti lo stato dei luoghi e degli impianti di installazione; nonché sulla necessità di predisporre particolari certificazioni e/o adeguamenti aggiuntivi rispetto allo standard osservato e trasmesso in capo a ciascun Prodotto. In merito a ciò il Fabbricante declina qualsiasi responsabilità per contestazioni, malfunzionamenti, criticità, danni e/o altro di conseguente ad informazioni lacunose, imprecise e/o assenti; nonché al mancato rispetto delle prescrizioni tecniche e normative di installazione, primo avviamento, conduzione operativa e manutenzione

Per un corretto rapporto col dispositivo è necessario garantire leggibilità e conservazione del manuale - anche per futuri riferimenti -. In caso di deterioramento o più semplicemente per ragioni di approfondimento tecnico ed operativo, rivolgersi direttamente al Costruttore. Testo, descrizioni, immagini, esemplificazioni e quant'altro di contenuto nel presente Documento, è di esclusiva proprietà del Fabbricante. E' vietata qualsiasi riproduzione.

AVVERTENZE GENERALI

- L'installazione deve essere effettuata in ottemperanza alle norme vigenti, secondo le istruzioni del costruttore e da personale professionalmente qualificato.
- Per personale professionalmente qualificato si intende quello avente competenza tecnica nel settore di applicazione dell'apparecchio (civile o industriale) e in particolare, i centri assistenza autorizzati dal costruttore.
- Un'errata installazione può causare danni a persone, animali o cose, per i quali il costruttore non è responsabile.
- Dopo aver tolto ogni imballaggio assicurarsi dell'integrità del contenuto.

In caso di dubbio non utilizzare l'apparecchio e rivolgersi al fornitore.

Gli elementi dell'imballaggio (gabbia di legno, chiodi, graffe, sacchetti di plastica, polistirolo espanso, ecc.) non devono essere lasciati alla portata dei bambini in quanto potenziali fonti di pericolo.

- Prima di effettuare qualsiasi operazione di pulizia o di manutenzione, disinserire l'apparecchio dalla rete di alimentazione, agendo sull'interruttore dell'impianto e/o attraverso gli appositi organi di intercettazione.
- Non ostruire le griglie di aspirazione o di dissipazione.
- In caso di guasto e/o di cattivo funzionamento dell'apparecchio, disattivarlo, astenendosi da qualsiasi tentativo di riparazione o di intervento diretto.

Rivolgersi esclusivamente a personale professionalmente qualificato.

L'eventuale riparazione dei prodotti dovrà essere effettuata solamente da un centro di assistenza autorizzato dalla casa costruttrice utilizzando esclusivamente ricambi originali.

Il mancato rispetto di quanto sopra può compromettere la sicurezza dell'apparecchio.

Per garantire l'efficienza dell'apparecchio e per il suo corretto funzionamento è indispensabile fare effettuare da personale professionalmente qualificato la manutenzione periodica attenendosi alle indicazioni del costruttore.

 Allorchè si decida di non utilizzare più l'apparecchio, si dovranno rendere innocue quelle parti suscettibili di causare potenziali fonti di pericolo;

- Se l'apparecchio dovesse essere venduto o trasferito ad un altro proprietario se si dovesse traslocare e lasciare l'apparecchio, assicurarsi sempre che il presente libretto accompagni l'apparecchio, in modo che possa essere consultato dal nuovo proprietario e/o dall'installatore;
- Per tutti gli apparecchi con optionals o kit (compresi quelli elettrici), si dovranno utilizzare solo accessori originali.
- Questo apparecchio dovrà essere destinato all'uso per il quale è stato espressamente previsto. Ogni altro uso è da considerarsi improprio e quindi pericoloso.

E' esclusa qualsiasi responsabilità contrattuale ed extra contrattuale del costruttore per i danni causati da errori nell'installazione e nell'uso, e comunque da inosservanza delle istruzioni date dal costruttore stesso.

Il verificarsi di una delle seguenti circostanze può causare danni anche gravi a persone, animali e cose, esplosioni, incombusti tossici (ad esempio ossido di carbonio CO) e ustioni:

- inosservanza di una delle AVVERTENZE riportate in questo capitolo
- inosservanza della buona norma applicabile
- errata movimentazione, installazione, regolazione, manutenzione
- uso impriprio del bruciatore e delle sue parti o optional di fornitura

1) AVVERTENZE PARTICOLARI PER BRUCIATORI

- Il bruciatore deve essere installato in locale adatto con aperture minime di ventilazione secondo quanto prescritto dalle norme vigenti e comunque sufficienti ad ottenere una perfetta combustione.
- Devono essere utilizzati solo bruciatori costruiti secondo le norme vigenti.
- Questo bruciatore dovrà essere destinato solo all'uso per il quale è stato espressamente previsto.
- Prima di collegare il bruciatore accertarsi che i dati di targa siano corrispondenti a quelli della rete di alimentazione (elettrica, gas, gasolio o altro combustibile).
- Non toccare le parti calde del bruciatore. Queste, normalmente situate in vicinanza della fiamma e dell'eventuale sistema di preriscaldamento del combustibile, diventano calde durante il funzionamento e permangono tali anche dopo l'arresto del bruciatore.

Allorchè si decida di non utilizzare in via definitiva il bruciatore, si dovranno far effettuare da personale professionalmente qualificato le seguenti operazioni:

- a disinserire l'alimentazione elettrica staccando il cavo di alimentazione dall'interruttore generale;
- b chiudere l'alimentazione del combustibile attraverso la valvola manuale di intercettazione asportando i volantini di comando dalla loro sede.

Avvertenze particolari

- Accertarsi che chi ha eseguito l'installazione del bruciatore lo abbia fissato saldamente al generatore di calore in modo che la fiamma si generi all'interno della camera di combustione del generatore stesso.
- Prima di avviare il bruciatore, e almeno una volta all'anno, far effettuare da personale professionalmente qualificato le seguenti operazioni:
- tarare la portata di combustibile del bruciatore secondo la potenza richiesta dal generatore di calore;
- regolare la portata d'aria comburente per ottenere un valore di rendimento di combustione almeno pari al minimo imposto dalle norme vigenti;
- eseguire il controllo della combustione onde evitare la formazione di incombusti nocivi o inquinanti oltre i limiti consen-titi dalle norme vigenti;
- d verificare la funzionalità dei dispositivi di regolazione e di sicurezza;
- e verificare la corretta funzionalità del condotto di evacuazione dei prodotti della combustione;
 - controllare al termine delle regolazioni che tutti i sistemi di bloccag-

gio meccanico dei dispositivi di regolazione siano ben serrati;

- g accertarsi che nel locale caldaia siano presenti anche le istruzioni relative all'uso e manutenzione del bruciatore.
- In caso di arresto di blocco, sbloccare l'apparecchiatura premendo l'apposito pulsante di RESET. Nell'eventualità di un nuovo arresto di blocco, interpellare l'Assistenza Tecnica, senza effettuare ulteriori tentativi.
- La conduzione e la manutenzione devono essere effettuate esclusivamente da personale professionalmente qualificato, in ottemperanza alle disposizioni vigenti.

2) AVVERTENZE GENERALI IN FUNZIONE DEL TIPO DI ALIMENTAZIONE

2a) ALIMENTAZIONE ELETTRICA

- La sicurezza elettrica dell'apparecchio è raggiunta soltanto quando lo stesso è correttamente collegato a un'efficace impianto di messa a terra, eseguito come previsto dalle vigenti norme di sicurezza.
- E' necessario verificare questo fondamentale requisito di sicurezza.
 In caso di dubbio, richiedere un controllo accurato dell'impianto elettrico da parte di personale professionalmente qualificato, poiché il costruttore non è responsabile per eventuali danni causati dalla mancanza di messa a terra dell'impianto.
- Far verificare da personale professionalmente qualificato che l'impianto elettrico sia adeguato alla potenza massima assorbita dall'apparecchio, indicata in targa, accertando in particolare che la sezione dei cavi dell'impianto sia idonea alla potenza assorbita dall'apparecchio.
- Per l'alimentazione generale dell'apparecchio dalla rete elettrica, non è consentito l'uso di adattatori, prese multiple e/o prolunghe.
- Per l'allacciamento alla rete occorre prevedere un interruttore onnipolare come previsto dalle normative di sicurezza vigenti.
- L'uso di un qualsiasi componente che utilizza energia elettrica comporta l'osservanza di alcune regole fondamentali quali:
 - non toccare l'apparecchio con parti del corpo bagnate o umide e/o a piedi nudi
 - non tirare i cavi elettrici
 - non lasciare esposto l'apparecchio ad agenti atmosferici (pioggia, sole, ecc.) a meno che non sia espressamente previsto
 - non permettere che l'appparecchio sia usato da bambini o da persone inesperte.
- Il cavo di alimentazione dell'apparecchio non deve essere sostituito dall'utente. In caso di danneggiamento del cavo, spegnere l'apparecchio, e, per la sua sostituzione, rivolgersi esclusivamente a personale professionalmente qualificato.

Allorchè si decida di non utilizzare l'apparecchio per un certo periodo, è opportuno spegnere l'interruttore elettrico di alimentazione a tutti i componenti dell'impianto che utilizzano energia elettrica (pompe, bruciatore, ecc.).

2b) ALIMENTAZIONE CON GAS, GASOLIO, O ALTRI COMBUSTIBILI

Avvertenze generali

- L'installazione del bruciatore deve essere eseguita da personale professionalmente qualificato e in conformità alle norme e disposizioni vigenti, poiché un'errata installazione può causare danni a persone, animali o cose, nei confronti dei quali il costruttore non può essere considerato responsabile.
- Prima dell'installazione, si consiglia di effettuare una accurata pulizia interna di tutte le tubazioni dell'impianto di adduzione del combustibile onde rimuovere eventuali residui che potrebbero compromettere il buon funzionamento del bruciatore.
- Per la prima messa in funzione del bruciatore, far effettuare da personale professionalmente qualificato le seguenti verifiche:
- a il controllo della tenuta interna ed esterna dell'impianto di adduzione del combustibile:
- la regolazione della portata del combustibile secondo la potenza richiesta dal bruciatore;
- c che il bruciatore sia alimentato dal tipo di combustibile per il quale è predisposto;
- d che la pressione di alimentazione del combustibile sia compresa nei valori riportati in tarchetta:
- e che l'impianto di alimentazione del combustibile sia dimensionato per la portata necessaria al bruciatore e che sia dotato di tutti i dispositivi di sicurezza e controllo prescritti dalle norme vigenti.
- Allorchè si decida di non utilizzare il bruciatore per un certo periodo,

chiudere il rubinetto o i rubinetti di alimentazione del combustibile.

Avvertenze particolari per l'uso del gas

Far verificare da personale professionalmente qualificato:

- a che la linea di adduzione e la rampa gas siano conformi alle norme e prescrizioni vigenti.
- b che tutte le connessioni gas siano a tenuta.
- c che le aperture di aerazione del locale caldaia siano dimensionate in modo da garantire l'afflusso di aria stabilito dalle normative vigenti e comunque sufficienti ad ottenere una perfetta combustione.
- Non utilizzare i tubi del gas come messa a terra di apparecchi elettrici
- Non lasciare il bruciatore inutilmente inserito quando lo stesso non è utilizzato e chiudere sempre il rubinetto del gas.
- In caso di assenza prolungata dell'utente, chiudere il rubinetto principale di adduzione del gas al bruciatore.

Avvertendo odore di gas:

- a non azionare interruttori elettrici, il telefono o qualsiasi altro oggetto che possa provocare scintille;
- b aprire immediatamente porte e finestre per creare una corrente d'aria che purifichi il locale;
- c chiudere i rubinetti del gas;
- d chiedere l'intervento di personale professionalmente qualificato.
- Non ostruire le aperture di aerazione del locale dove è installato un apparecchio a gas, per evitare situazioni pericolose quali la formazione di miscele tossiche ed esplosive.

Utilizzo manometri olio:In genere, i manometri sono equipaggiati con una valvola manuale. Aprire la valvola solo per effettuare la lettura e chiuderla immediatamente dopo.

DIRETTIVE E NORME APPLICATE

Bruciatori di gas

Direttive europee:

- -2009/142/CE (Direttiva Gas)
- -2006/95/CEE (Direttiva Bassa Tensione)
- -2004/108/CEE (Direttiva Compatibilità Elettromagnetica)
- -2006/42/CE (Direttiva Macchine)

Norme armonizzate

- -UNI EN 676 (Bruciatori automatici di combustibili gassosi ad aria soffiata)
- -EN 55014-1 (Compatibilità-Requisiti elettromagnetici degli elettrodomestici, degli attrezzi elettrici e di simili apparecchi)
- -CEI EN 60335-1(Sicurezza degli apparecchi elettrici d' uso domestico e similare)
- -EN 50165 (Requisiti di sicurezza impianti elettrici)
- -EN 60335-2-102 Sicurezza degli apparecchi elettrici d'uso domestico e similare Parte 2: Norme particolari per apparecchi aventi bruciatori a gas, gasolio e combustibile solido provvisti di connessioni elettriche.

Bruciatori di gasolio

Direttive europee

- -2006/95/CEE (Direttiva Bassa Tensione)
- -2004/108/CEE(Direttiva Compatibilità Elettromagnetica)
- -2006/42/CE (Direttiva Macchine)

Norme armonizzate

- -UNI EN 267(Bruciatori automatici per combustibili liquidi ad aria soffiata);
- -EN 55014-1 (Compatibilità-Requisiti elettromagnetici degli elettrodomestici, degli attrezzi elettrici e di simili apparecchi)
- -CEI EN 60335-1(Sicurezza degli apparecchi elettrici d' uso domestico e similare)
- -EN 50165 (Requisiti di sicurezza impianti elettrici)

Norme nazionali / National Standard

-UNI 7824 Bruciatori monoblocco di combustibili liquidi a polverizzazione. Caratteristiche e metodi di prova)

Bruciatori di olio combustibile

Direttive europee

- -2006/95/CEE (Direttiva Bassa Tensione);
- -2004/108/CEE (Direttiva Compatibilità Elettromagnetica)
- -2006/42/CE (Direttiva Macchine)

Norme armonizzate

- -EN 55014-1 (Compatibilità-Requisiti elettromagnetici degli elettrodomestici, degli attrezzi elettrici e di simili apparecchi)
- -UNI EN 267 (Bruciatori automatici per combustibili liquidi ad aria soffiata)
- -CEI EN 60335-1 (Sicurezza degli apparecchi elettrici d' uso domestico e similare)
- -EN 50165 (Requisiti di sicurezza impianti elettrici)

Norme nazionali

-UNI 7824 (Bruciatori monoblocco di combustibili liquidi a polverizzazione. Caratteristiche e metodi di prova)

Bruciatori misti gas-gasolio

Direttive europee

- -2009/142/CE (Direttiva Gas)
- -2006/95/CEE (Direttiva Bassa Tensione)
- -2004/108/CEE (Direttiva Compatibilità Elettromagnetica)
- -2006/42/CE (Direttiva Macchine)

Norme armonizzate

- -UNI EN 676 (Bruciatori automatici di combustibili gassosi ad aria sof-
- -EN 55014-1 (Compatibilità-Requisiti elettromagnetici degli elettrodomestici, degli attrezzi elettrici e di simili apparecchi)
- -UNI EN 267 (Bruciatori automatici per combustibili liquidi ad aria soffiata)
- -CEI EN 60335-1 (Sicurezza degli apparecchi elettrici d' uso domestico e similare)
- -EN 50165 (Requisiti di sicurezza impianti elettrici)

Norme nazionali

-UNI 7824 (Bruciatori monoblocco di combustibili liquidi a polverizzazione. Caratteristiche e metodi di prova)

Bruciatori misti gas-olio combustibile

Direttive europee

- -2009/142/CE(Direttiva Gas)
- -2006/95/CEE (Direttiva Bassa Tensione)
- -2004/108/CEE (Direttiva Compatibilità Elettromagnetica)
- -2006/42/CE (Direttiva Macchine)

Norme armonizzate

- -UNI EN 676 (Bruciatori automatici di combustibili gassosi ad aria soffiata)
- -EN 55014-1 (Compatibilità-Requisiti elettromagnetici degli elettrodomestici, degli attrezzi elettrici e di simili apparecchi)
- -CEI EN 60335-1 (Sicurezza degli apparecchi elettrici d' uso domestico e similare)
- -EN 50165 (Requisiti di sicurezza impianti elettrici)

Norme nazionali

- UNI 7824 (Bruciatori monoblocco di combustibili liquidi a polverizzazione. Caratteristiche e metodi di prova)

Bruciatori industriali

Direttive europee

- -2009/142/CE (Direttiva Gas)
- -2006/95/CEE (Direttiva Bassa Tensione)
- -2004/108/CEE (Direttiva Compatibilità Elettromagnetica)
- -2006/42/CE (Direttiva Macchine)

Norme armonizzate

- -EN 55014-1 (Compatibilità-Requisiti elettromagnetici degli elettrodomestici, degli attrezzi elettrici e di simili apparecchi)
- -EN 746-2 (Apparecchiature di processo termico industriale, Requisiti di sicurezza per la combustione e per la movimentazione ed il trattamento dei combustibili).
- -EN 50165 (Requisiti di sicurezza impianti elettrici)

TARGA DATI DEL BRUCIATORE

Per le seguenti informazioni fare sempre riferi- Anno mento alla targa dati del bruciatore:

- tipo e modello della macchina (da segnalare in Port. Olio ogni comunicazione col fornitore macchina).
- numero matricola bruciatore (da segnalare Press obbligatoriamente in ogni comunicazione col for-Visc Tens.
 nitore).
- Data fabbricazione (mese e anno)
- Indicazione su tipo gas e pressione in rete

Tipo -
Modello -
Anno -
Mat. -
Port. -
Port. Olio -
Comb. -
Cat -
Press -
Visc -
Tens. -
Pot.Elet. -
P.Vent. -
Prot. -
Dest. -
PiN --

SPIEGAZIONE DEI SIMBOLI E DELLE AVVERTENZE

ATTENZIONE

Questo simbolo contraddistingue avvertenze, la cui inosservanza può produrre danni irreparabili all'apparecchio o danni all'ambiente.

PERICOLO!

Questo simbolo contraddistingue avvertenze,la cui inosservanza può avere come conseguenza gravi danni per la salute fino a ferimenti mortali.

PERICOLO!

Questo simbolo contraddistingue avvertenze, la cui inosservanza può comportare scosse elettriche con conseguenze mortali

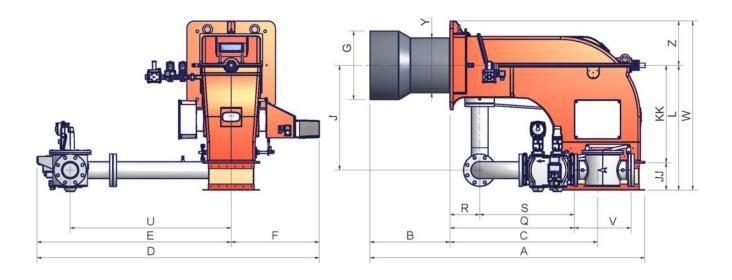
PARTE I: INSTALLAZIONE

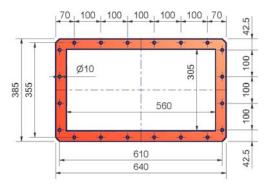
Identificazione dei bruciatori

I bruciatori vengono identificati con tipi e modelli. L'identificazione dei modelli è descritta di seguito.

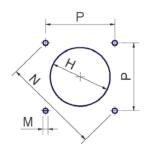
Tipo TP1030 Modello M MD. S. *IT. (1) (2) (3) (4) (5)	A. 1. 80. ES (6) (7) (8) (9)						
(1) BRUCIATORE TIPO	TP1030 - TP1050 - TP1080						
(2) COMBUSTIBILE	M - Gas naturale						
(3) REGOLAZIONE (Versioni disponibili)	MD - Modulante						
(4) BOCCAGLIO	S - Standard						
(5) PAESE DI DESTINAZIONE	* Vedere targa dati (IT= Italia)						
(6) VERSIONI SPECIALI	A - Standard						
(7) EQUIPAGGIAMENTO (versioni disposibili)	1 = 2 valvole + controllo di tenuta 8 = 2 valvole + controllo di tenuta + pressostato gas di massima						
(8) DIAMETRO RAMPAconsultare le Caratteristiche tecniche	80 = DN80 100 = DN100 125 = DN125						
(8) BRUCIATORE A COMADNO ELETTRONICO	ES = senza controllo ossigeno e senza inverter EO = con controllo ossigeno e senza inverter EI = senza controllo ossigeno e con inverter EK = con controllo ossigeno e con inverter						

Dati tecnici

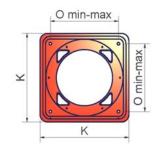

BRUCIATore tipo		TP1030	TP1050	TP1080			
Potenza	min - max kW	2500-13300	3500-15500	3500-19000			
Combustibile			Gas naturale				
Categoria		(vedi į	(vedi paragrafo successivo)				
Portata gas	min max. (Stm ³ /h)	265-1407	370-1640	370-2011			
Alimentazione elettrica ausiliari			400V 3~ 50 Hz				
Alimentazione elettrica motore		vedere tar	ga dati motore	ventilatore			
Potenza elettrica totale (escluso ventilatore)	kW		0.5				
Potenza elettrica motore ventilatore	kW	vedere tar	vedere targa dati motore ventilatore				
Protezione			IP40				
Tipo di regolazione		Prog	ressivo - Modu	ılante			
Pressione			(vedi Nota2)				
Rampa gas 80	Ø Valvole Attacchi		80 / DN80				
Rampa gas 100	Ø Valvole Attacchi		100 / DN100				
Rampa gas 125	Ø Valvole Attacchi		125 / DN125				
Peso approssimato	kg		250				
Temperatura di funzionamento	°C		-10 ÷ +50				
Temperatura di immagazzinamento	°C		-20 ÷ +60				
Tipo di servizio		Continuo					


Nota1:	tutte le portate gas sono in Stm^3/h (pressione assoluta 1013 mbar e temperatura 15° C) e valgono per Gas G20 (potere calorifico inferiore H_i = 34.02 MJ/Stm ³)
Nota2:	Pressione gas massima = 500 mbar (con valvole Siemens VGD).
	Pressione gas minima = vedi curve

Categorie gas e paesi di applicazione

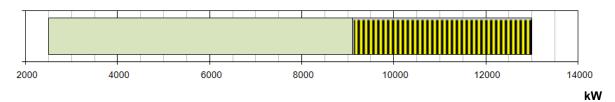

CATEGORIA GAS		PAESE																							
I _{2H}	АТ	ES	GR	SE	FI	ΙE	HU	IS	NO	CZ	DK	GB	IT	PT	CY	EE	LV	SI	МТ	SK	BG	LT	RO	TR	СН
l _{2E}	LU	PL	1	,	-	-	1	1	-	-	-	-	-	-	-	1	ı	1	-	-	1	-	1	1	-
I _{2E(R)B}	BE	1	1	1	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	1	1	-
I _{2L}	NL	1	1	1	-	-	-	-	-	-	-	-	-	-	-	-	ı	-	-	-	-	-	1	1	-
I _{2ELL}	DE	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
I _{2Er}	FR	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Dimensioni di ingombro in mm

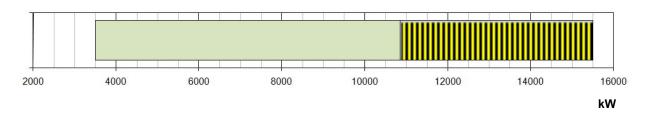


Flangia canale aria

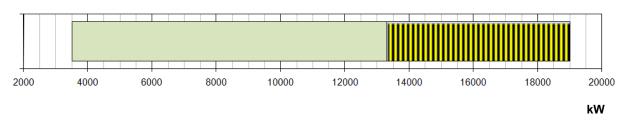
Foratura caldaia consigliata


Flangia bruciatore

	DN	Α	В	С	CC	D	Е	F	G	Н	J	JJ	K	KK	L	M	N	0	00	Р	Q	R	RR	S	SS	TT	U	٧	W	Υ	Z
TP1030	80	1864	544	1320	348	1898	1301	597	464	504	710	185	660	660	845	M16	651	460	1000	460	936	200	265	736	80	587					
TP1030	100	1864	544	1320	348	1914	1317	597	464	504	710	185	660	660	845	M16	651	460	1000	460	842	200	265	642	80	587	1092	382	1175	372	330
TP1050	80	1864	544	1320	348	1898	1301	597	489	539	710	185	660	660	845	M16	651	460	1000	460	936	200	265	736	80	587	1092	322	1175	408	330
TP1050	100	1864	544	1320	348	1914	1317	597	489	539	710	185	660	660	845	M16	651	460	1000	460	842	200	265	642	80	587	1092	382	1175	408	330
TP1080	100	1864	544	1320	348	1914	1317	597	514	564	710	185	660	660	845	M16	651	460	1000	460	842	200	265	642	80	587	1092	382	1175	408	330
TP1080	125	1864	544	1320	348	1946	1349	597	514	564	710	185	660	660	845	M16	651	460	1000	460	954	200	265	754	80	587	1192	480	1175	408	330

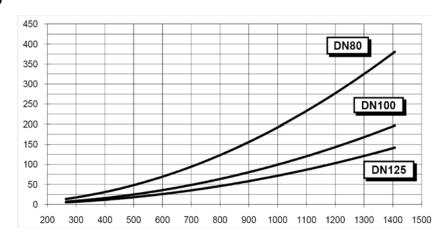

Nota: le dimensioni si riferiscono alla versione meccanica. Примечание: размеры относятся к механическому варианту.

Campi di lavoro


TP1030

TP1050

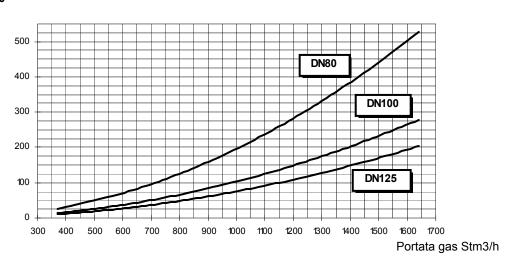
TP1080


Campo di scelta del bruciatore

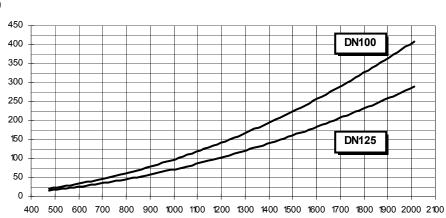
Per ottenere la potenza in kcal/h, moltiplicare il valore di potenza in kW per 860. I dati sono riferiti a condizioni standard: pressione atmosferica pari a 1013 mbar, temperatura ambiente pari a 15°C..

Curve pressione in rete - portata gas

TP1030


PRESSIONE GAS IN RETE mbar

Portata gas Stm³/h


TP1050

PRESSIONE GAS IN RETE mbar

TP1080

PRESSIONE GAS IN RETE mbar

Portata gas Stm³/h

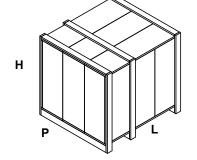
Attenzione: in ascissa è riportato il valore della portata gas, in ordinata il corrispondente valore di pressione in rete al netto della pressione in camera di combustione. Per conoscere la pressione minima in ingresso rampa, necessaria per ottenere la portata gas richiesta, bisogna sommare la pressione in camera di combustione al valore letto in ordinata.

INSTALLAZIONE

Imballaggio

I bruciatori vengono consegnati in imballi di legno di dimensioni:

TP1030 - TP1050: 2180 x 1180 x 1160 (L x P x H)


TP1080: 2180 x 1580 x 1560 (L x P x H)

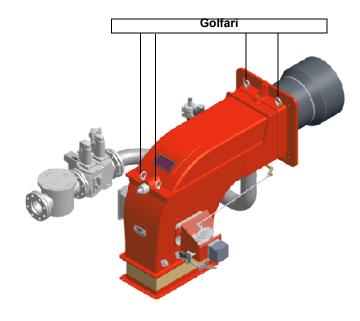
All'interno di ciascun imballo sono inseriti:

- bruciatore con rampa gas staccata;
- guarnizione da interporre tra bruciatore e caldaia;
- busta contenente questo manuale.

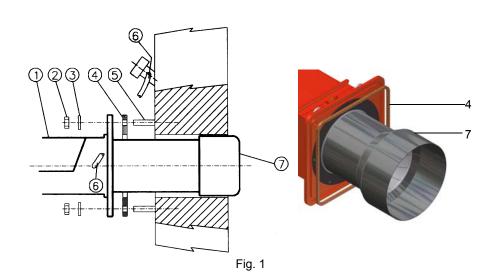
Tali imballi temono l'umidità e non sono adatti per essere impilati.

Imballo quadro elettrico e ventilatore: in base al modello.

Per eliminare l'imballo del bruciatore, seguire le procedure previste dalle leggi vigenti sullo smaltimento dei materiali.


Sollevamento e movimentazione del bruciatore

ATTENZIONE! Le operazioni di sollevamento e movimentazione devono essere condotte da personale specializzato ed addestrato per la movimentazione dei carichi. Qualora queste operazioni non siano effettuate correttamente, permane il rischio residuo di rovesciamento e caduta della macchina.


Per la movimentazione utilizzare mezzi con portata adeguata al peso da sostenere (consultare il paragrafo "Caratteristiche tecniche")."

Il bruciatore è provvisto di golfari per il sollevamento.

Montaggio del bruciatore alla caldaia

- 1 Per installare il bruciatore è necessario forare la piastra di chiusura della camera di combustione come descritto al paragrafo "DImensioni di ingombro");
- 2 avvitare i prigionieri (5) sul portellone della caldaia, secondo la dima di foratura descritta al par. "Dimensioni di ingombro";
- 3 accostare il bruciatore alla piastra della caldaia: sollevare e movimentare il bruciatore utilizzando i golfari preseti sulla parte superiore del bruciatore;
- 4 togliere il boccaglio, allentando le tre viti dietro la flangia del bruciatore;
- 5 posizionare la corda in fibra ceramica sulla flangia del bruciatore;
- 6 reinserire il boccaglio: prima di fissare completamente le viti, verificare che il boccaglio sia centrato rispetto alla testa di combustione;
- 7 montare il bruciatore alla caldaia;
- 8 fissarlo con i dadi ai prigionieri della caldaia secondo lo schema riportato in Fig. 1.
- 9 Terminato il montaggio del bruciatore alla caldaia, sigillare lo spazio tra il boccaglio e la pigiata refrattaria, con apposito materiale isolante (cordone in fibra resistente alla temperatura o cemento refrattario).

Legenda

- 1 Bruciatore
- 2 Dado di fissaggio
- 3 Rondella
- 4 Corda fibra ceramica
- 5 Prigioniero
- 7 Boccaglio

Installazione del ventilatore

Prestare attenzione al dimensionamento della condotta dell'aria. Il dimensionamento va fatto in base alla portata, alla temperatura dell'aria, alla distanza del ventilatore dal bruciatore e alle caratteristiche del ventilatore.

ATTENZIONE! Il soffietto in dotazione è in tela ed è dotato di distanziali di bloccaggio per evitare che si rompa durante il montaggio: montare **prima** il soffietto tra le flange e, **dopo**, estrarre i distanziali di bloccaggio.

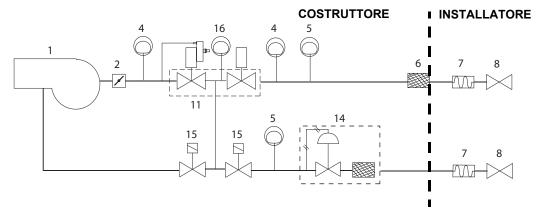
Abbinamento del bruciatore alla caldaia

Per accoppiare correttamente il bruciatore alla caldaia, verificare che la potenza richiesta e la pressione in camera di combustione rientrino nel campo di lavoro. In caso contrario dovrà essere rivista la scelta del bruciatore, consultando il Costruttore.

Per la scelta della lunghezza del boccaglio ci si deve attenere alle istruzioni del Costruttore della caldaia. In mancanza di queste ci si orienterà nel seguente modo:

- Caldaie a tre giri di fumo (con il primo giro fumi nella parte posteriore): il boccaglio deve entrare in camera di combustione per non
 più di 100 mm.
- Caldaie pressurizzate ad inversione di fiamma: in questo caso il boccaglio dovrà penetrare in camera di combustione per almeno
 50 100 mm, rispetto alla piastra del fascio tubiero.

La lunghezza dei boccagli non sempre soddisfa questo requisito, pertanto potrebbe essere necessario utilizzare un distanziale di misura adeguata, che serve a far arretrare il bruciatore in modo da soddisfare le misure di cui sopra.


COLLEGAMENTO DELLE RAMPE GAS

Gli schemi seguenti mostrano i componenti inclusi nella fornitura insieme al bruciatore e quelli forniti dall'installatore. Gli schemi sono conformi alle norme di legge.

ATTENZIONE: PRIMA DI ESEGUIRE I COLLEGAMENTI ALLA RETE DI DISTRIBUZIONE DEL GAS, ACCERTARSI CHE LE VALVOLE MANUALI DI INTERCETTAZIONE SIANO CHIUSE. LEGGERE ATTENTAMENTE IL CAPITOLO "AVVER-TENZE" DEL PRESENTE MANUALE.

Rampa con gruppo valvole VGD20/40.. con stabilizzatore di pressione gas incorporato + pressostato controllo perdite PGCP e rampa pilota.

Legenda

- 1 Bruciatore
- 2 Valvola a farfalla
- 4 Pressostato di massima pressione gas (opzione*)
- 5 Pressostato di minima pressione gas
- 6 Filtro gas
- 7 Giunto antivibrante

- 8 Valvola manuale di intercettazione
- 11 Gruppo valvole VGD
- 14 Stabilizzatore di pressione gas con filtro incorporato
- 15 Valvola gas pilota
- 16 PGCP (pressostato gas controllo perdite)

*Nota: il pressostato di massima può essere montato o a monte o a valle delle valvole del gas, ma a monte della valvola a farfalla (vedi schema - elemento 4).

La rampa pilota è già installata a bordo del bruciatore, devono essere eseguiti:

• il collegamento dal filtro regolatore pressione gas alla rete di alimentazione del gas

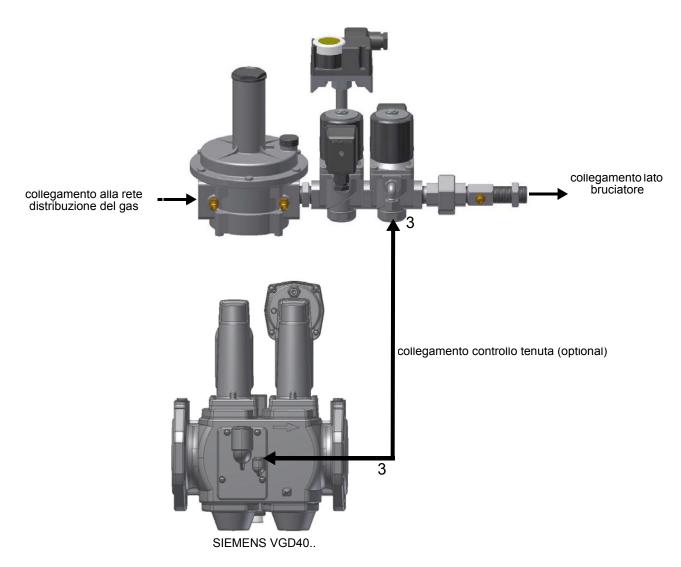


Fig. 2 - attacco (3) tubetto da rampa pilota al gruppo valvole della rampa principale (nello schema non è previsto ma si può eseguire)

Assemblaggio della rampa del gas

Per assemblare la rampa principale del gas, procedere nel modo seguente:

rete distribuzione gas

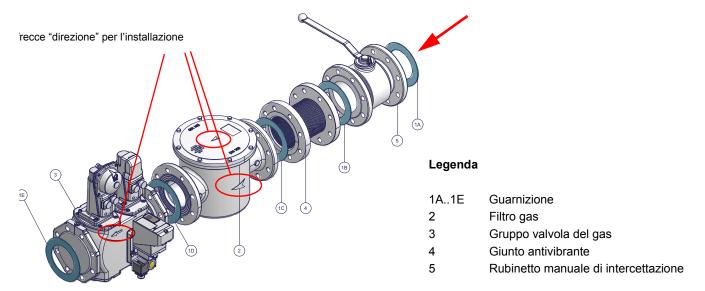


Fig. 3 - Esempio di rampa gas

- 1) nel caso di giunti flangiati: interporre tra un componente e l'altro, una guarnizione (n. 1A..1E Fig. 3) compatibile con il gas utilizzato,
- 2) fissare tutti i componenti con le viti, secondo gli schemi riportati, rispettando la direzione di montaggio di ogni elemento.

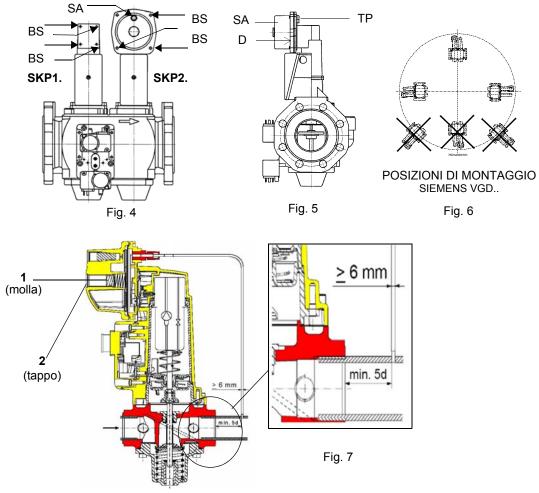
NOTA: Il giunto antivibrante, il rubinetto di intercettazione e le guarnizioni non fanno parte della fornitura standard.

ATTENZIONE: una volta montata la rampa secondo lo schema riportato in Fig. 3, deve essere effettuata la prova di tenuta del circuito gas, secondo le modalità previste dalla normativa vigente.

Vengono di seguito riportate le procedure di installazione dei gruppi valvole utilizzati nelle diverse rampe.

rampe flangiate con Multibloc Dungs MBC..SE 1900-3100-5000 o Siemens VGD40.. (gruppo valvole flangiato)

Valvole gas Siemens VGD20.. e VGD40.. - Versione con SKP2.. (stabilizzatore di pressione incorporato) Montaggio


- Per montare le valvole gas doppie VGD.., sono necessarie 2 flange (per il mod. VGD20.. le flange sono filettate). Per impedire l'ingresso di corpi estranei nella valvola, montare dapprima le flange;
- sulla tubazione, pulire le parti assemblate e successivamente montare la valvola;
- la direzione del flusso di gas deve seguire la freccia sul corpo della valvola;
- assicurarsi che i bulloni sulle flange siano accuratamente serrati;
- verificare che le connessioni di tutti i componenti siano a tenuta;
- assicurarsi che gli O-ring siano correttamente posizionati tra le flange e la valvola (solo per VGD20..);
- assicurarsi che le guarnizioni siano correttamente posizionate tra le flange (solo per VGD40..).
- Collegare il tubetto di riferimento pressione gas (TP in figura tubo fornito sciolto con diametro esterno da 8 mm) agli appositi raccordi posti sulla tubazione gas, dopo le valvole gas: la pressione del gas deve essere acquisita ad una distanza pari o superiore a
 circa 5 volte il diametro nominale della tubazione.
- Lasciare libero lo sfiato in atmosfera (**SA** in figura). Qualora la molla installata non soddisfi le esigenze di regolazione, interpellare i nostri centri di assistenza per l'invio di una molla opportuna.

Attenzione: il diaframma D dell'SKP2 deve essere verticale (vedi Fig. 6).

ATTENZIONE: la rimozione delle 4 viti BS danneggia irreparabilmente gli apparecchi!

Valvole Siemens VGD con SKP :

Il campo di regolazione della pressione, a valle del gruppo valvole, varia in base al tipo di molla in dotazione al gruppo valvole.

Campo di lavoro (mbar)	0 - 22	15 - 120	100 - 250
Colore molla	neutra	gialla	rossa

Controllo di tenuta integrato (per bruciatori equipaggiati con LME7x, LMV, LDU)


Di seguito viene illustrato il funzionamento del controllo di tenuta integrato:

- Inizialmente entrambe le valvole EV1, EV2 sono chiuse
- Fase di evacuazione: la valvola EV1 (lato bruciatore) viene aperta e mantenuta in questa posizione per un periodo di tempo td4, in modo da portare il volume di prova (spazio tra EV2 e EV1) alla pressione atmosferica.
- Test della pressione atmosferica: la valvola EV1 viene chiusa e mantenuta in questa posizione per un periodo di tempo td1. Il pressostato PGCP non deve rilevare un'aumento di pressione.
- Fase di riempimento: viene aperta la valvola EV2 e mantenuta in questa posizione per un tempo td3 in modo da permettere il riempimento del volume di prova
- Test della pressione del gas: viene chiusa la valvola EV2 e mantenuta in questa posizione per un tempo td2. Il pressostato PGCP non deve rilevare un calo di pressione.

Nel caso tutte le fasi precedentemente elencate abbiano successo, il test di tenuta può ritenersi concluso positivamente. In caso contrario verrà generato un blocco del bruciatore.

Per LMV5x, LMV2x/3x e LME73 (fatta eccezione per LME73.831BC), il controllo di tenuta può essere configurato in modo da avvenire all'accensione, allo spegnimento o entrambi.

Per LME73.831BC il controllo di tenuta è impostato esclusivamente per avvenire all'accensione.

Una volta installata la rampa del gas, eseguire i collegamenti elettrici dei suoi componenti: gruppo valvole, pressostati e controllo di tenuta.

ATTENZIONE: una volta montata la rampa secondo lo schema riportato in Fig. 3, deve essere effettuata la prova di tenuta del circuito gas, secondo le modalità previste dalla normativa vigente.

Collegamenti elettrici

Rispettare le regole fondamentali di sicurezza, assicurarsi del collegamento all'impianto di messa a terra, non invertire i collegamenti di fase e neutro, prevedere un interruttore differenziale magneto-termico adeguato per l'allacciamento alla rete.

ATTENZIONE: Prima di eseguire i collegamenti elettrici, assicurarsi di posizionare l'interruttore dell'impianto in posizione OFF e accertarsi che l'interruttore principale del bruciatore sia in posizione 0 (OFF - spento). Leggere attentamente il capitolo "AVVERTENZE", alla sezione "Alimentazione elettrica".

Per l'esecuzione dei collegamenti, procedere nel modo seguente:

- 1 togliere il coperchio del quadro elettrico del bruciatore, svitando le viti di fissaggio;
- 2 eseguire i collegamenti elettrici alla morsettiera di alimentazione seguendo gli schemi allegati;
- 3 verificare il senso di rotazione del motore del ventilatore (vedere il paragrafo successivo);
- 4 rimontare il coperchio del quadro.

zione del motore.

ATTENZIONE: il bruciatore viene fornito con un ponte elettrico tra i morsetti 6 e 7, nel caso di collegamento del termostato alta/bassa fiamma, rimuovere tale ponte prima di collegare il termostato.

IMPORTANTE: Collegando i fili elettrici di alimentazione alla morsettiera MA del bruciatore, assicurarsi che il filo di terra sia più lungo dei conduttori di fase e neutro.

Fare riferimento agli schemi elettrici allegati.

Rotazione motore ventilatore

Dopo aver completato il collegamento elettrico del bruciatore, ricordarsi di verificare la rotazione del motore del ventilatore.

Il motore deve ruotare nel senso indicato sulla carcassa. In caso di rotazione errata invertire l'alimentazione trifase e riverificare la rota-

Curve di pressione del gas in testa di combustione in funzione della portata

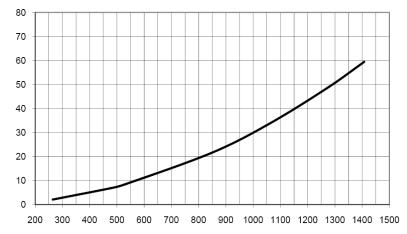
Le curve sono applicabili per pressione = 0 mbar in camera di combustione!

Le curve di pressione in testa di combustione in funzione della portata gas, sono valide nel caso di bruciatore correttamente regolato (percentuale di O_2 residuo nei fumi come da tabella "Parametri di combustione consigliati" e CO entro i limiti di norma). In questo stadio, la testa di combustione, la farfalla del gas e il servocomando sono alla massima apertura. Fare riferimento alla Fig. 8, che indica il modo corretto per misurare la pressione del gas, tenendo conto dei valori di pressione in camera di combustione, rilevati dal manometro o dalle caratteristiche tecniche della caldaia/utilizzo.

Fig. 8

Legenda

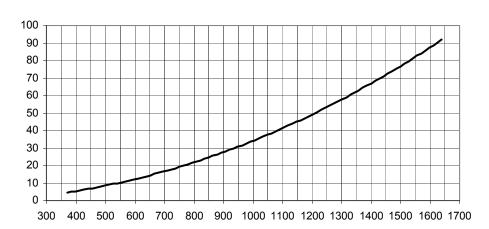
- 1 Generatore
- 2 Presa di pressione in camera di combustione
- 3 Presa di pressione gas valvola a farfalla
- 4 Manometro differenziale


Misura della pressione del gas in testa di combustione

Inserire le sonde relative agli ingressi del manometro: una nella presa di pressione della camera di combustione per rilevare il dato di pressione in camera di combustione e l'altra nella presa di pressione gas della valvola a farfalla del bruciatore, per rilevare la pressione nella testa di combustione. In base alla pressione differenziale, così rilevata, si ricava il dato relativo alla portata gas massima: utilizzando i grafici delle curve pressione-portata in testa di combustione al paragrafo successivo, dal dato relativo alla pressione in testa (riportato in ordinata) si ricava il valore della portata bruciata in Stm³/h, riportata in ascissa. I dati ricavati devono essere utilizzati per la regolazione della portata del gas.

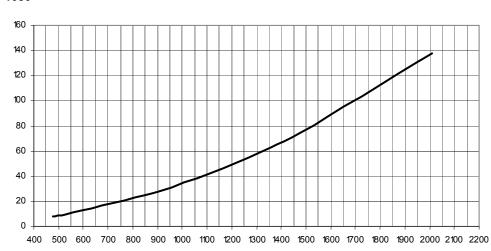
NOTA: LE CURVE PRESSIONE - PORTATA SONO PURAMENTE INDICATIVE; PER UNA CORRETTA REGOLAZIONE DELLA PORTATA GAS, FARE RIFERIMENTO ALLA LETTURA DEL CONTATORE.

Curve pressione in testa di combustione - portata gas TP1030


Pressione gas in testa mbar

Portata gas Stm³/h

TP1050


Pressione gas in testa mbar

Portata gas Stm³/h

TP1080

Pressione gas in testa mbar

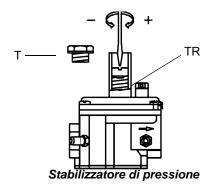
Portata gas Stm³/h

REGOLAZIONI DELL'ARIA COMBURENTE E DEL GAS COMBUSTIBILE

Filtro Gas

I filtri per gas fermano le particelle di polvere portate dal gas e proteggono gli elementi in pericolo (es.: valvole bruciatori, contatori e regolatori) da un rapido intasamento. Il filtro è normalmente posizionato a monte di tutti gli organi di regolazione e intercettazione.

Regolazione della portata del gas pilota: valvola Brahma EG12*R e stabilizzatore di pressione


Per variare la portata della valvola gas pilota, procedere nel modo seguente:

- 1 rimuovere la protezione situata sul fondo della valvola, ruotandola in senso antiorario (vedi figura);
- 2 ruotando in senso orario il dado 1, come indicato in figura, la valvola si chiude, in senso antiorario si apre.

Per ottimizzare la regolazione di portata, agire direttamente sullo stabilizzatore di pressione (vedi figura):

3 rimuovere il tappo T: per aumentare la pressione del gas in uscita, agire con il cacciavite sulla vite TR come indicato in figura: avvitando la pressione aumenta, svitando diminuisce; terminata la regolazione, reinserire il tappo T.

Regolazione portata aria e gas

ATTENZIONE: prima di avviare il bruciatore, assicurarsi che le valvole manuali di intecettazione siano aperte e controllare che il valore di pressione a monte della rampa sia conforme ai valori riportati nel paragrafo "Dati tecnici".
Assicurarsi, inoltre, che l'interruttore generale di alimentazione sia chiuso.

ATTENZIONE: Durante le operazioni di taratura fare attenzione a non far funzionare il bruciatore con portata d'aria insufficiente (pericolo di formazione di monossido di carbonio); nel caso ciò avvenisse ridurre lentamente il gas fino a rientrare nei valori di combustione normali.

ATTENZIONE: LE VITI SIGILLATE NON DEVONO ESSERE ASSOLUTAMENTE ALLENTATE! SE CIÒ AVVENISSE, LA GARANZIA SUL COMPONENTE DECADREBBE IMMEDIATAMENTE!

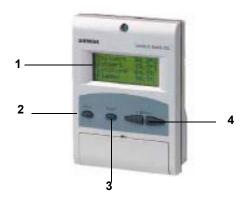
IMPORTANTE! l'eccesso di aria di combustione va regolato secondo i parametri consigliati riportati nella seguente tabella:

Parametri di combustione consigliati									
Combustibile	CO ₂ Consigliato (%)	O ₂ Consigliato (%)							
Gas naturale	9 ÷ 10	3 ÷ 4.8							

Regolazione - descrizione generale

La regolazione delle portate di aria e di combustibile si esegue prima alla massima potenza ("alta fiamma"): consultare il manuale LMV5.. allegato.

- Verificare che i parametri di combustione rientrino nei limiti consigliati.
- Verificare la portata misurandola al contatore o, nel caso non fosse possibile, verificando la pressione in testa di combustione con un manometro differenziale, come descritto al paragrafo "Curve di pressione del gas in testa di combustione in funzione della portata" a pagina 18.
- Successivamente, regolare la combustione definendo i punti della curva "rapporto gas/aria" (consultare il manuale LMV5.. allegato).
- Stabilire la potenza della bassa fiamma al fine di evitare che la potenza in bassa fiamma sia troppo elevata oppure che la temperatura dei fumi sia troppo bassa da causare condensazioni nel camino.


ATTENZIONE: Dai servocomandi non si effettua alcuna regolazione. In ogni caso non toccare mai il pulsante rosso dei servocomandi, altrimenti verranno cancellati alcuni parametri fondamentali per il funzionamento del bruciatore. Il bruciatore andrà, così continuamente in blocco.

Procedura di regolazione

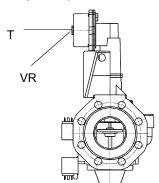
Procedere con le impostazioni.

L'utente può accedere alle impostazioni che non sono protette da password.

L'interfaccia utente Siemens AZL viene utilizzata per la programmazione del controllore Siemens LMV e per la visualizzazione dei dati di sistema.

Descrizione dell'interfaccia:

- 1. display: visualizza i menù e i parametri
- 2. tasto ESC (livello precedente): per tornare al livello di menù precedente e uscire dalla programmazione senza modificare i dati
- 3. tasto ENTER (livello successivo): per confermare la modifica di un parametro e passare al menù/parametro successivo
- 4. tasti SELECT: per selezionare una voce di menù e per la modifica di parametri.


Per la programmazione del sistema LMV5, consultare il manuale allegato.

Seguendo la procedura di impostazione delle curve rapporto combustibile/aria riportata del manuale del controllore LMV5, procedere con le regolazioni di aria e gas: monitorando costantemente l'analisi dei fumi, al fine di evitare combustioni in difetto d'aria, dosare l'aria in base alla variazione della portata del gas effettuata secondo la procedura riportata di seguito.

Una volta aperta completamente la farfalla gas, per regolare la **portata del gas in alta fiamma** ai valori richiesti dalla caldaia/utilizzo, agire sullo stabilizzatore di pressione del gruppo valvole:

Valvole gas Siemens VGD - Versione con SKP2. (stabilizzatore di pressione incorporato).

Per aumentare o diminuire la pressione e di conseguenza la portata di gas, agire con un cacciavite sulla vite di regolazione VR dopo avere tolto il tappo T. Avvitando la portata aumenta, svitando diminuisce.

Procedura di avviamento

- 1 Accendere il bruciatore.
- 2 L'apparecchiatura LMV esegue il ciclo di test del sistema: sul display dell'AZL è visualizzato il messaggio System Test (Test di sistema); al termine della fase di test viene visualizzata la pagina principale e il sistema va in sosta (con la catena di sicurezza aperta) in attesa del consenso all'avvio (standby fase 12 del programma)

Setpoint	80°C
ValEffet	78°C
Combstib.	GAS
Standby	12

Visualizzazione principale

- 3 controllare il senso di rotazione del motore ventilatore (vedere paragrafo relativo);
- 4 avviare il sistema, facendo in modo che le catene di sicurezza inviino il segnale di consenso all'avviamento;
- 5 comincia il ciclo di combustione: il display visualizzerà i vari stadi di funzionamento
- -- Preventilazione (fase 30 del programma)
- Andare in posizione di accensione (fase 36 del programma)
- Posizione di accensione (fase 38 del programma)
- Consenso combustibile (si aprono le elettrovalvole del combustibile)
- Fiamma (viene generata la fiamma)
- Andare in carico minimo (il servocomando si muove verso la posizione di bassa fiamma).

NOTA: I simboli C e A, in basso sul display, indicano rispettivamente la posizione di apertura del combustibile e dell'aria.

Una volta eseguito il ciclo di accensione, verrà visualizzata la schermata principale:

Setpoint	80°C
ValEffet	78°C
Carico	24%
Fiamma	60%

Visualizzazione principale

Set point: valore di set-point impostato per la temperatura

Val effet.: valore di temperatura/pressione effettivo Carico: percentuale di carico (potenza del bruciatore) Fiamma: percentuale di corrente rilevazione fiamma.

Dalla pagina principale si passa alla seconda pagina premendo ENTER:

Comb.	0.0	Aria	1.8
Au1		CF	0.0
Au2		O2	
Au3		Car	0.0

Visualizzazione secondaria

Comb.: indica la posizione (in gradi) del servocomando relativo al combustibile.

Air: indica la posizione (in gradi) del servocomando relativo all'aria.

Au1..3: ausiliari.

CF: valore in % sulla frequenza massima dell'inverter

O2: percentuale di ossigeno

Car: percentuale di carico, rispetto alla potenza massima impostata sul bruciatore.

Premendo ENTER si ritorna alla pagina principale.

Per accedere al menù principale, dalla visualizzazione principale, premere ESC due volte:

Visualizza stato Funzionamento FunzionManuale **Parametri e Visual**

Menù principale

Premendo ESC una sola volta si accede direttamente al sottomenù Visualizza Stato, prima voce del menù principale:

FunzionamNormale Stato/Reset StoricoErrori StoricoBlocchi

il menù Visualizza Stato prevede le seguenti voci:

- **FunzionamNormale:** selezionando questa voce e premendo ENTER si ha la visualizzazione iniziale, premere ESC per tornare al menù principale.
- Stato/Reset: mostra l'errore di sistema o avaria in corso/ rappresenta la funzione di reset per un blocco (lockout).
- Storico Errori: selezionando questa voce con il tasto ENTER, verrà visualizzato lo storico delle ultime 21 avarie occorse.
- Storico Blocchi: selezionando questa voce con il tasto ENTER, verrà visualizzato lo storico degli ultimi 9 blocchi occorsi con data e ora.
- AllarmAtt/Disatt: attiva/disattiva la sirena in caso di allarme.

Storico errori

Per visualizzare lo Storico Errori, selezionare questa voce e premere ENTER. Il messaggio visualizzato sarà del tipo:

1 Classe:			05Gas
cod.	BF	Fase:	10
Diag.:	00	Pot:	0.0
Nr. avv.			88

intervallato dal messaggio di errore del tipo:

Regolazione e
controllo O2
disattivato
automaticamente

per visualizzare le altre pagine dello storico, premere i tasti freccia.

Per uscire dallo storico errori, premere ESC.

Storico blocchi

Per visualizzare lo **Storico Blocchi**, selezionare questa voce e premere ENTER.

Il messaggio visualizzato sarà del tipo:

1	10.08.07		13.47
C:71	D:00	F:	12
Nr. avv.			88
Potenz.	0.0		Gas

intervallato dal messaggio di errore del tipo:κ

Blocco manuale è stato azionato

per visualizzare le altre pagine dello storico, premere i tasti freccia.

Per uscire dallo storico blocchi, premere ESC.

Impostazione del set-point di temperatura/pressione

Per impostare il set-point di temperatura/pressione, ossia la temperatura o pressione di lavoro del generatore, procedere nel modo seguente.

Dalla pagina principale, accedere al menù principale premendo ESC due volte.

Visualizza stato
Funzionamento
FunzionManuale
Parametri e Visual

tramite i tast freccia, selezionare "Params&Visual" e premere ENTER: verrà visualizzata la schermata di richiesta password:

Accesso senza PW
Access con HF
Accesso con OEM
Access con SBT

selezionare, tramite i tasti freccia, la voce "Accesso senza PW" (accesso senza password - livello utente) e confermare con ENTER.

Gli altri livelli di accesso richiedono una password riservata al Centro assistenza, al Costruttore, ecc. Il menù visualizzato con accesso senza password è il seguente:

ControlloBruciat.
CammaElettronica
Monitor.Regol.O2
RegolatCarico

Selezionare la voce "RegolatCarico" (REGOLATORE CARICO) e premere ENTER: verrà visualizzato il menù

ParamRegolat.
Configurazione
Adattamento
VersioneSoftware

Selezionare" Param.Regolat." (Parametri del regolatore) e premere ENTER: verrà visualizzato:

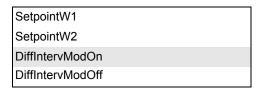
SelezParamRegol.
PassoMinServom.
CostTmpFiltrSW
SetpointW1

Selezionare SetPointW1, tramite i tasti freccia e premere ENTER:

SetpointW1	
Att:	90°
Nuov:	90°

Att: indica il valore di set-point già impostato, per cambiare il valore utilizzare i tasti freccia.

NOTA: Il range disponibile dipende dal sensore utilizzato; l'unità di misura della grandezza rilevata e i relativi limiti sono vincolati da parametri di livello "Service".


Una volta impostato il nuovo set-point, confermare con ENTER, altrimenti per uscire senza variazioni premere ESC.

Premere ESC per uscire dalla programmazione del set-point dopo avere confermato il valore impostato con ENTER.

Dopo avere impostato il valore di temperatura set-point W1, impostare i valori del "termostato limite di accensione" (SDon) e del "termostato limite di spegnimento" (SDOff).

Per impostare questi valori, selezionare con le frecce la voce DiffIntervModOn (SDOn), scorrendo verso il basso il menù "RegolCarico"; premere ENTER

verrà visualizzato:

DiffIntervModOn	
Att:	1.0%
Nuov:	1.0%

Per deafult il valore di questo parametro è 1%: cioé, il bruciatore riaccenderà ad una temperatura inferiore dell'1% rispetto al set-point. Modificare il dato tramite i tasti freccia. Premere ENTER per confermare poi ESC per uscire. Oppure premere solamente ESC per uscire senza modificare il dato.

Selezionare, quindi, sempre con le frecce, la voce DiffIntervModOff (SDOff), scorrendo verso il basso il menù "RegolCarico"; premere

SetpointW1	
SetpointW2	
DiffIntervModOn	
DiffIntervModOff	

verrà visualizzato:

DiffIntervModOff	
Att:	10.0%
Nuov:	10.0%

Per deafult il valore di questo parametro è 10%: cioé, il bruciatore si spegnerà ad una temperatura superiore del 10% rispetto al setpoint.

Premere ENTER per confermare poi ESC per uscire. Oppure premere solamente ESC per uscire senza modificare il dato. Premere ESC fino a visualizzare il menù

ControlloBruciat.
CammaElettronica
Monitor.Regol.O2
RegolatCarico

scorrere questo menù verso il basso fino a selezionare la voce "AZL"

RegolatCarico
AZL
Servomotori
Modulo Inverter

confermare con ENTER:

Tempi	
Lingua	
FormatoData	
UnitàFisiche	

Tempi: permette di impostare il funzionamento "Estate / Inverno" e il fuso orario (EU - Europa; USA - Stati Uniti)

Estate/Inverno		
Fuso EU/US		

selezionare la modalità Estate/Inverno desiderata e confermare con ENTER; premere ESC per uscire. Impostare il fuso orario nello stesso modo.

Lingua: permette di impostare la lingua

Lingua	
Att:	English
Nuov:	Italiano

selezionare la lingua desiderata e confermare con ENTER; premere ESC per uscire.

FormatoData: permette di impostare il formato data DD-MM-YY (giorno-mese-anno) oppure MM-DD-YY (mese-giorno-anno)

FormatoData	
Att:	DD-MM-YY
Nuov:	MM-DD-YY

selezionare il formato desiderato e confermare con ENTER; premere ESC per uscire.

UnitàFisiche: permette di impostare le unità di misura di temperatura e pressione

UnitàTemperatura	
UnitaPressione	

Unità di temperatura impostabili: °C o °F

Unità di pressione impostabili: bar o psi.

- selezionare l'unità desiderata confermare con ENTER; premere ESC per uscire.
- impostare l'unità di temperatura e pressione e confermare con ENTER; premere ESC per uscire.

Blocco del sistema

In caso di blocco del sistema, verrà visualizzato il messaggio:

1	10.08.07		13.47
C:71	D:00	F:	12
Nr. avv.			88
Potenz.	0.0		Gas

contattare il centro di Assistenza Tecnica e comunicare i dati del messaggio.

Partenza a freddo

Quando il generatore non deve subire stress termici, si deve attivare la funzione "Cold Start" (Partenza a freddo), che può essere già stata abilitata dal Centro Servizi (accesso tramite password riservata).

Se tale funzione è stata abilitata, all'accensione del bruciatore verrà visualizzato il messaggio "Thermal Schock Protection Activated" (Protezione shock termico attivata). Se, invece, la funziona non è abilitata, , dopo l'accensione, il bruciatore aumenterà rapidamente il carico in base alla richiesta dell'utenza e, se necessario, fino alla massima potenza.

Modalita' manuale

Per by-passare la protezione termica o per non lasciare lavorare il bruciatore alla massima potenza dopo l'accensione, è prevista la modalità MANUALE. Per selezionare la modalità manuale, utilizzare i tasti freccia SELECT per posizionarsi in corrispondenza della voce FunzionManuale (Funzionamento manuale)e premere ENTER:

Visualizza stato	
Funzionamento	
FunzionManuale	
Parametri e Visual	

Le voci da impostare sono le seguenti:

SelezCarico	
Autom/Man/Spento	

SelezCarico: imposta la percentuale di carico desiderata

SelezCarico	
Att:	0.0%
Nuov:	20.0%

impostare la percentuale desiderata e confermare con ENTER; premere ESC per uscire. Selezionare ora la voce "Autom/Manual/Spento":

SelezCarico	
Autom/Man/Spento	

Autom/Man/Spento	
Att:	Automatico
Nuov:	Bruciat On

sono disponibili tre impostazioni:

Automatico: funzionamento automatico Bruciat on: funzionamento manuale Bruciat off: bruciatore in stand-by

Impostando la modalità "Bruciat On" il bruciatore non segue le impostazioni del modulatore e della sonda, ma si fissa sul carico impostato.

Attenzione: se si imposta "Bruciat Off" il bruciatore rimane in stand-by.

Attenzione: in modalità manuale (Bruciat On) le soglie di sicurezza sono impostate dal Centro Assistenza.

Per maggiori dettagli consultare i manuali allegati per LMV5x.

Taratura pressostato aria

Procedere con la taratura del pressostato aria come segue:

- Togliere il coperchio di plastica trasparente.
- Dopo aver completato le tarature di aria e combustibile, accendere il bruciatore.
- Con il bruciatore in bassa fiamma, ruotare lentamente la ghiera di regolazione VR in senso orario (per aumentare la pressione di taratura) fino ad ottenere il blocco del bruciatore, leggere il valore di pressione sulla scala e reimpostarlo ad un valore inferiore del 15% circa.
- Ripetere il ciclo di accensione del bruciatore e controllare che funzioni correttamente.
- Rimontare il coperchio trasparente sul pressostato.

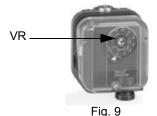
Taratura pressostato gas di minima

Per la taratura del pressostato gas procedere come segue:

- Assicurarsi che il filtro sia pulito.
- Togliere il coperchio di plastica trasparente.
- Con il bruciatore in funzione alla massima potenza, misurare la pressione del gas sulla presa di pressione del pressostato.
- Chiudere lentamente la valvola manuale di intercettazione a monte pressostato (vedi diagramma installazione rampe gas), fino a
 riscontrare una riduzione della pressione del 50% rispetto al valore letto in precedenza. Controllare che non aumenti il valore di CO
 nei fumi: se il valore di CO è superiore ai limiti di legge, aprire lentamente la valvola di intercettazione fino a rientrare nei suddetti

limiti.

- Verificare che il bruciatore funzioni regolarmente.
- Ruotare la ghiera di regolazione del pressostato in senso orario (per aumentare la pressione), fino allo spegnimento del bruciatore.
- Aprire completamente la valvola manuale di intercettazione
- Rimontare il coperchio trasparente.


Taratura pressostato gas di massima (dove presente)

Per la taratura procedere come segue, a seconda della posizione di montaggio del pressostato di massima:

- 1 togliere il coperchio di plastica trasparente del pressostato.
- 2 se il pressostato di massima è montato a monte delle valvole del gas: misurare la pressione del gas in rete con fiamma spenta; impostare, sulla ghiera di regolazione **VR**, il valore letto aumentato del 30%.
- Se, invece, il pressostato di massima è montato dopo il gruppo "regolatore-valvole gas" e prima della valvola a farfalla: accendere il bruciatore, regolarlo secondo la procedura riportata ai precedenti paragrafi. Misurare, quindi, la pressione del gas alla portata di esercizio, dopo il gruppo "regolatore-valvole gas" e prima della valvola a farfalla; impostare, sulla ghiera di regolazione VR, il valore letto, aumentato del 30%.
- 4 rimontare il coperchio di plastica trasparente.

Pressostato gas controllo perdite PGCP (con apparecchiatura di controllo Siemens LDU/ BMS Siemens LMV)

- Togliere il coperchio di plastica trasparente sul pressostato.
- Regolare il pressostato PGCP allo stesso valore impostato per il pressostato gas di minima pressione.
- Rimontare il coperchio di plastica trasparente.

PARTE II: FUNZIONAMENTO

LIMITAZIONI D'USO

IL BRUCIATORE È UN APPARECCHIO PROGETTATO E COSTRUITO PER FUNZIONARE SOLO DOPO ESSERE STATO CORRETTAMENTE ACCOPPIATO AD UN GENERATORE DI CALORE (ES. CALDAIA, GENERATORE ARIA CALDA, FORNO, ECC.), OGNI ALTRO USO E' DA CONSIDERARSI IMPROPRIO E QUINDI PERICOLOSO.

L'UTENTE DEVE GARANTIRE IL CORRETTO MONTAGGIO DELL'APPARECCHIO AFFIDANDONE L'INSTALLAZIONE A PER-SONALE QUALIFICATO, E FACENDO ESEGUIRE LA PRIMA ACCENSIONE DA UN CENTRO ASSISTENZA AUTORIZZATO DALL'AZIENDA COSTRUTTRICE DEL BRUCIATORE. E' FONDAMENTALE, A QUESTO PROPOSITO, IL COLLEGAMENTO ELETTRICO AGLI ORGANI DI REGOLAZIONE E SICUREZZA DEL GENERATORE (TERMOSTATI DI LAVORO, SICUREZZA, ECC.) CHE GARANTISCE UN FUNZIONAMENTO DEL BRUCIATORE CORRETTO E SICURO.

E' PERTANTO DA ESCLUDERSI OGNI FUNZIONAMENTO DELL'APPARECCHIO CHE PRESCINDA DALLE OPERAZIONI DI INSTALLAZIONE O CHE AVVENGA DOPO TOTALE O PARZIALE MANOMISSIONE DI QUESTE (ES. SCOLLEGAMENTO ANCHE PARZIALE DI CONDUTTORI ELETTRICI, APERTURA DEL PORTELLONE DEL GENERATORE, SMONTAGGIO DI PARTI DEL BRUCIATORE).

NON APRIRE O SMONTARE MAI ALCUN COMPONENTE DELLA MACCHINA.

AGIRE SOLO SULL'INTERRUTTORE GENERALE, CHE PER LA SUA FACILE ACCESSIBILITÀ E RAPIDITÀ DI MANOVRA FUNGE ANCHE DA INTERRUTTORE DI EMERGENZA, ED EVENTUALMENTE SUL PULSANTE DI SBLOCCO.

IN CASO DI ARRESTO DI BLOCCO, SBLOCCARE L'APPARECCHIATURA PREMENDO L'APPOSITO PULSANTE DI RESET. NELL'EVENTUALITÀ DI UN NUOVO ARRESTO DI BLOCCO, INTERPELLARE L'ASSISTENZA TECNICA, SENZA EFFETTUARE ULTERIORI TENTATIVI.

ATTENZIONE: DURANTE IL NORMALE FUNZIONAMENTO LE PARTI DEL BRUCIATORE PIÙ VICINE AL GENERATORE (FLAN-GIA DI ACCOPPIAMENTO) SONO SOGGETTE A RISCALDAMENTO. EVITARE DI TOCCARLE PER NON RIPORTARE USTIONI.

FUNZIONAMENTO

ATTENZIONE: prima di avviare il bruciatore, assicurarsi che le valvole manuali di intecettazione siano aperte e controllare che il valore di pressione a monte della rampa sia conforme ai valori riportati nel paragrafo "Dati tecnici". Assicurarsi, inoltre, che l'interruttore generale di alimentazione sia chiuso.

- 1 Portare in posizione l'interruttore presente sul quadro di controllo del bruciatore in posizione di accensione.
- 2 Controllare che l'apparecchiatura di controllo fiamma non si trovi in posizione di blocco: eventualmente sbloccarla agendo sul pulsante di sblocco.
- 3 Verificare che la serie di pressostati o termostati invii, al bruciatore, il segnale di consenso al funzionamento.
- 4 L'apparecchiatura LMV fa aprire, per alcuni secondi, la valvola EV2 e controlla, tramite il pressostato PGCP che la pressione tra le valvole EV1 e EV2 rimanga a 0 mbar. Se si verifica un aumento di pressione, significa che la valvola EV1 non ha tenuta e LMV va in blocco. Per sbloccare, premere il pulsante di sblocco sul guadro di controllo del bruciatore. Controllare le valvole.
- 5 Si avvia il motore del ventilatore, il servocomando porta la serranda aria in posizione di massima apertura; inizia da questo momento il conteggio del tempo di preventilazione.
- 6 Durante la preventilazione, LMV fa aprire la valvola EV1 per alcuni secondi. Tramite il pressostato PGCP controlla cha la pressione aumenti e rimanga poi constante.
- 7 A questo punto, LMV ha terminato il ciclo di controllo e dà il consenso di funzionamento al bruciatore. In caso contrario LMV bloccherà il funzionamento del bruciatore. Per sbloccare, premere il pulsante di sblocco PS sul quadro di controllo del bruciatore.
- Finita la preventilazione, la serranda aria si porta in posizione di accensione (circa 5°), viene inserito il trasformatore di accensione, vengono alimentate le due valvole gas **EV1** e **EV2**.
- 9 La fiamma deve formarsi entro pochi secondi dall'apertura delle valvole gas, altrimenti l'apparecchiatura di controllo fiamma va in blocco.
- 10 Il bruciatore risulta così acceso e contemporaneamente il servocomando si porta verso la posizione di alta fiamma e si ferma poco oltre la posizione di bassa fiamma.
- 11 Dopo alcuni secondi dall'apertura delle valvole gas, il bruciatore si porta automaticamente, secondo le esigenze dell'impianto, in posizione di alta o bassa fiamma.

PARTE III: MANUTENZIONE

Almeno un volta all'anno eseguire le operazioni di manutenzione riportate nel seguito. Nel caso di servizio stagionale si raccomanda di eseguire la manutenzione alla fine di ogni stagione di riscaldamento; nel caso di servizio continuativo la manutenzione va eseguita ogni 6 mesi.

ATTENZIONE! TUTTI GLI INTERVENTI SUL BRUCIATORE DEVONO ESSERE EFFETTUATI CON L'INTERRUTTORE ELETTRICO GENERALE APERTO E VALVOLE MANUALI DI INTERCETTAZIONE DEL COMBUSTIBILE CHIUSE.

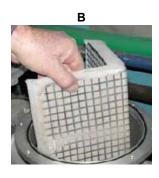
ATTENZIONE: LEGGERE SCRUPOLOSAMENTE LE AVVERTENZE RIPORTATE ALL'INIZIO DEL MANUALE.

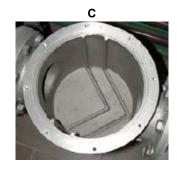
OPERAZIONI PERIODICHE

- Controllare e pulire la cartuccia del filtro gas; sostituirla se necessario.
- Smontaggio esame e pulizia testa di combustione (vedi pag. 35).
- Esame elettrodo di accensione, pulizia, eventuale registrazione e, se necessario, sostituzione (vedi pag. 35)
- Esame fotocellula di rilevazione, pulizia, eventuale registrazione e, se necessario, sostituzione (vedi pag. 35). In caso di dubbio verificare il circuito di rilevazione, dopo aver rimesso in funzione il bruciatore, seguendo gli schemi in Fig. 14.
- Pulizia ed ingrassaggio di leveraggi e parti rotanti..

ATTENZIONE: se, durante le operazioni di manutenzione, si rendesse necessario smontare le parti costituenti la rampa del gas, ricordarsi di eseguire, una volta rimontata la rampa, la prova di tenuta secondo le modalità previste dalle normative vigenti.

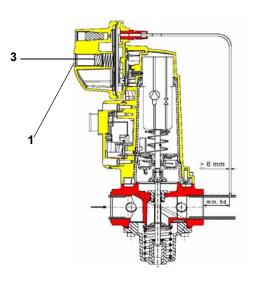
Manutenzione del filtro gas




ATTENZIONE: prima di aprire il filtro chiudere la valvola di intercettazione del gas a valle e sfiatare; assicurarsi, inoltre, che al suo interno non vi sia gas in pressione.

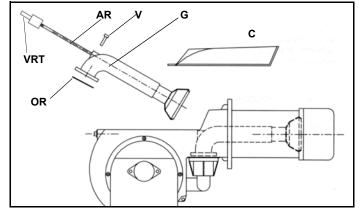
Per pulire o sostituire il filtro gas procedere nel modo seguente:

- 1 togliere il coperchio svitando le viti di bloccaggio (A);
- 2 smontare la cartuccia filtrante (B), pulirla con acqua e sapone, soffiarla con aria compressa (o sostituirla se necessario)
- 3 rimontare la cartuccia nella posizione iniziale controllando che sia sistemata tra le apposite guide e che non ostacoli il montaggio del coperchio;
- 4 facendo attenzione che l'o-Ring sia sistemato nell'apposita cava (C), richiudere il coperchio bloccandolo con le apposite viti (A).



Sostituzione della molla del gruppo valvole

Per sostituire la molla in dotazione al gruppo valvole, procedere nel modo seguente:


- 1 Svitare con cautela il cappuccio di protezione 1 e l'anello "O" (2).
- 2 Togliere la molla di "taratura valore nominale" 3 dal corpo 4.
- 3 Sostituire la molla 3.
- 4 Introdurre con cautela la molla. Fare attenzione al corretto montaggio! Introdurre nel corpo per prima la parte della molla di diametro minore.
- 5 Introdurre l'anello "O" 2 nel coperchio e riavvitarlo.
- 6 Incollare la targhetta di specificazione della molla sulla targhetta d'identificazione.

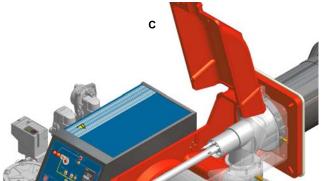
Attuatore Siemens SKP

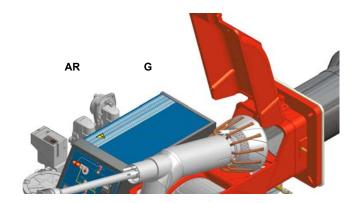
- Togliere la calotta C, svitando le viti di fissaggio;
- scollegare i cavi degli elettrodi;
- svitare le 3 viti V che bloccano, alla base, il collettore del gas G ed estrarre il gruppo completo come indicato in figura.

Nota: per il successivo rimontaggio eseguire in ordine inverso le operazioni sopra descritte, prestando cura al corretto posizionamento dell'anello **OR** fra collettore gas e bruciatore.

Legenda

VRT Vite di regolazione testa


AR Asta filettata


V Vite di fissaggio

G Collettore gas

OR "O" ringli

C Calotta

Regolazione posizione dell'elettrodo di accensione

Importante: eseguire il controllo dell'elettrodo di accensione dopo aver smontato la testa di combustione.

ATTENZIONE: per non compromettere il funzionamento del bruciatore, evitare il contatto dell'elettrodo di accensione con parti metalliche (testa, boccaglio, ecc). Controllare la posizione dell'elettrodo dopo ogni intervento di manutenzione sulla testa di combustione.

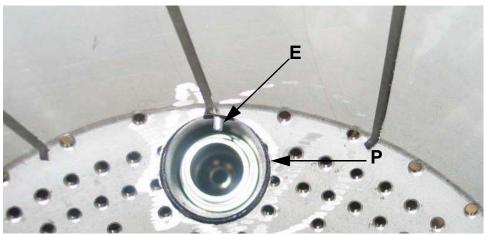


Fig. 10 - Particolare del diffusore con pilota (P) e elettrodo di accensione (E)

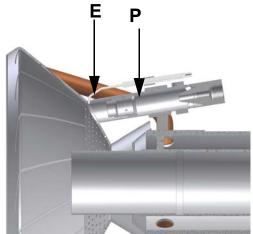


Fig. 11 - Particolare testa di combustione con pilota (P) e elettrodo di accensione (E)

Rispettare le quote riportate in figura..

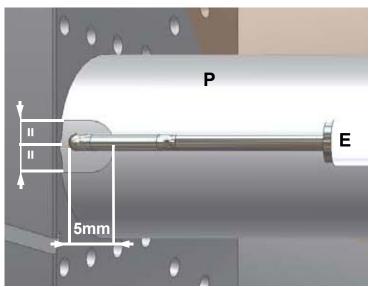
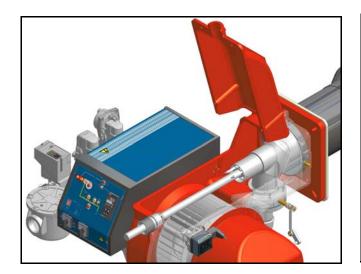
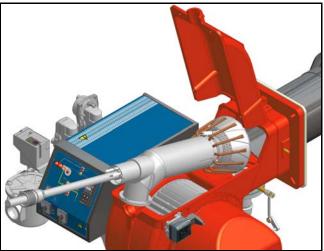


Fig. 12


Sostituzione dell'elettrodo di accensione



ATTENZIONE: per non compromettere il funzionamento del bruciatore, evitare il contatto dell'elettrodo di accensione con parti metalliche (testa, boccaglio, ecc). Controllare la posizione dell'elettrodo dopo ogni intervento di manutenzione sulla testa di combustione.

Per sostituire l'elettrodo di accensione procedere nel seguente modo:

- 1 togliere la calotta;
- 2 scollegare il cavo (CE) dell'elettrodo (E);
- 3 estrarre la testa di combustione facendo riferimento al paragrafo "Estrazione della testa di combustione"
- 4 allentare la vite (B) del supporto di bloccaggio che assicura l'elettrodo di accensione (E) al pilota del bruciatore (P);
- 5 estrarre l'elettrodo e sostituirlo facendo riferimento alle quote mostrate in Fig. 12.

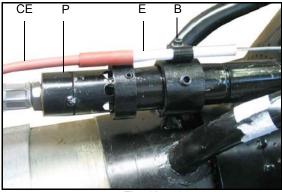



Fig. 13

Pulizia e sostituzione della fotocellula di rilevazione

Per pulire/sostituire la fotocellula di rilevazione procedere nel seguente modo:

- 1 togliere tensione all'impianto;
- 2 interrompere l'alimentazione del gas;
- 3 estrarre, tirando, la fotocellula dalla sua sede come mostrato in figura;
- 4 pulire il bulbo se sporco, facendo attenzione a non toccarlo con le mani nude;
- 5 se necessario, sostituire il bulbo
- 6 reinserire la fotocellula nel suo alloggiamento.

Controllo della corrente di rilevazione

Per misurare il segnale di rilevazione seguire lo schema in figura. Se il segnale non rientra nei valori indicati, verificare la posizione della fotocellula, i contatti elettrici ed eventualmente sostituirla.

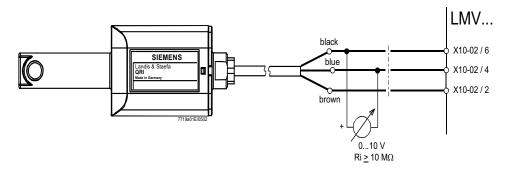


Fig. 14 - Rilevazione con fotocellula QRI..

Minimo segnale di rilevazione: 3.5Vdc

Fermo stagionale

Per spegnere il bruciatore nel periodo di fermo stagionale, procedere nel modo seguente:

- 1 portare l'interruttore generale del bruciatore in posizione 0 (OFF spento)
- 2 staccare la linea di alimentazione elettrica
- 3 chiudere il rubinetto del combustibile della linea di distribuzione.

Smaltimento del bruciatore

In caso di rottamazione del bruciatore, seguire le procedure previste dalle leggi vigenti sullo smaltimento dei materiali.

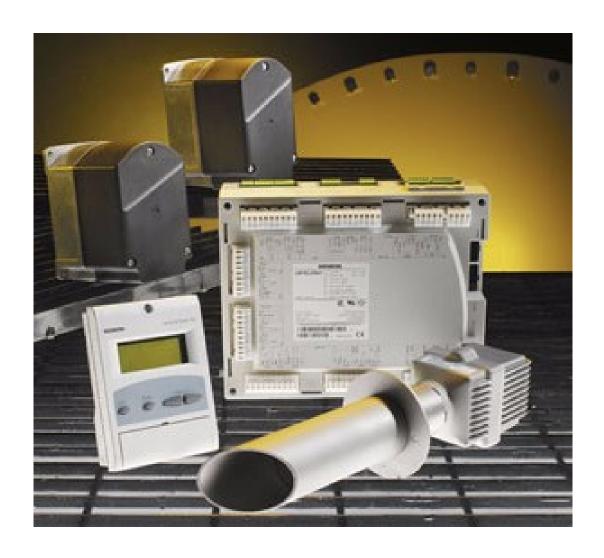
SCHEMI ELETTRICI

Consultare gli schemi elettrici allegati.

ATTENZIONE

- 1 Alimentazione elettrica 400V 50Hz 3N a.c.

- 2 Non invertire fase con neutro
 3 Assicurare una buona messa a terra del bruciatore
 4 Seguire l'allegato al manuale "Prescrizioni per collegamenti LMV5x"


					Р	ROBLE	ΛA				
CAUSA	NON PARTE	CONTINUA A FARE IL PRELAVAGGIO	NON SI ACCENDE E VA IN BLOCCO	NON SI ACCENDE E RIPETE IL CICLO	SI ACCENDE E RIPETE IL CICLO	SI ACCENDE E VA IN BLOCCO	L'APPARECCHIATURA NON DA' IL CONSENSO ALLA PARTENZA	NON PASSA IN ALTA FIAMMA	NON TORNA IN BASSA FIAMIMA	VA IN BLOCCO DURANTE IL FUNZIONAMENTO	SI SPEGNE E RIPETE IL CICLO DURANTE IL FUNZIONAMENTO
INTERRUTTORE GENERALE APERTO	•										
MANCANZA DI GAS	•			•							
PRESSOSTATO GAS DI MASSIMA DIFETTOSO	•		•								
TERMOSTATI/PRESSOSTATI CALDAIA DIFETTOSI	•			•							•
INTERVENTO RELE' TERMICO	•										
FUSIBILI AUSILIARI INTERROTTI	•										
APPARECCHIATURA CONTROLLO FIAMMA DIFETTOSA	•	•	•			•				•	
SERVOCOMANDO DIFETTOSO	•	•	•								
PRESSOSTATO ARIA STARATO O DIFETTOSO	•					•	•			•	
PRESSOSTATO GAS DI MINIMA DIFETTOSO O FILTRO GAS SPORCO	•			•	•		•				•
TRASFORMATORE DI ACCENSIONE GUASTO			•								
ERRATA POSIZIONE ELETTRODI DI ACCENSIONE			•								
FARFALLA GAS STARATA			•			•					
STABILIZZATORE DI PRESSIONE GAS DIFETTOSO			•	•	•						•
VALVOLA GAS DIFETTOSA			•								
ERRATO COLLEGAMENTO O DIFETTO DEL TERMOSTATO/PRESSOSTATO ALTA-BASSA FIAMMA								•	•		
CAMMA SERVOCOMANDO STARATA							•	•	•		
FOTOCELLULA SPORCA O DIFETTOSA			•			•				•	

C.I.B. UNIGAS S.p.A.
Via L.Galvani, 9 - 35011 Campodarsego (PD) - ITALY
Tel. +39 049 9200944 - Fax +39 049 9200945/9201269
web site: www.cibunigas.it - e-mail: cibunigas@cibunigas.it

Siemens LMV5x

Service Manual

Warnings:

To avoid injury to persons, damage to property or the environment, the following warning notes must be observed

Qualified personal

In the sense of this documentation, qualified personal are those who are knowledgeable and qualified to install, mount, commission, operate and service / maintain LMV5 system together with burner & boiler products.

The personal must have the appropriate qualifications to carry out these activities, for example:

Trained and authorized to energize and de-energize, ground and tag circuits and equipment according to applicable safety standards.

Trained or instructed according to the latest related standards (e.g. EN298, EN676, EN267, ..).

Notes of caution:

The equipment must be installed in compliance with the regulations in force, following the manufacturer's instructions, by qualified personnel.

Qualified personnel means those having technical knowledge in the field of components for civil or industrial heating systems, sanitary hot water generation and particularly service centres authorised by the manufacturer.

Improper installation may cause injury to people and animals, or damage to property, for which the manufacturer cannot be held liable.

Remove all packaging material and inspect the equipment for integrity.

In case of any doubt, do not use the unit - contact the supplier.

The packaging materials (wooden crate, nails, fastening devices, plastic bags, foamed polystyrene, etc), should not be left within the reach of children, as they may prove harmful.

Before any cleaning or servicing operation, disconnect the unit from the mains by turning the master switch OFF, and/or through the cut- out devices that are provided.

Make sure that inlet or exhaust grilles are unobstructed.

In case of breakdown and/or defective unit operation, disconnect the unit. Make no attempt to repair the unit or take any direct action.

Contact qualified personnel only.

Units shall be repaired exclusively by a servicing centre, duly authorised by the manufacturer, with original spare parts.

Failure to comply with the above instructions is likely to impair the unit's safety.

To ensure equipment efficiency and proper operation, it is essential that maintenance operations are performed by qualified personnel at regular intervals, following the manufacturer's instructions.

When a decision is made to discontinue the use of the equipment, those parts likely to constitute sources of danger shall be made harmless.

In case the equipment is to be sold or transferred to another user, or in case the original user should move and leave the unit behind, make sure that these instructions accompany the equipment at all times so that they can be consulted by the new owner and/or the installer.

For all the units that have been modified or have options fitted then original accessory equipment only shall be used.

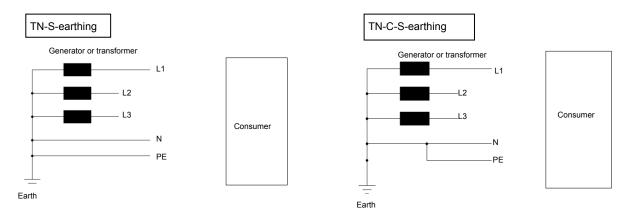
This unit shall be employed exclusively for the use for which it is meant. Any other use shall be considered as improper and, there- fore, dangerous.

The manufacturer shall not be held liable, by agreement or otherwise, for damages resulting from improper installation, use and failure to comply with the instructions supplied by the manufacturer.

1 WIRING RECOMMENDATIONS	4
1.1 Earthing	4
1.1.1 TN earthing system	4
1.1.2 Protective Earth (PE) and Functional Earth (FE)	4
1.2 .Frequency inverter / Variable Speed Drive (VSD)	5
1.3 Ignition electrodes and transformers	5
1.3.1 Recommendations	6
1.3.2 Shielding	6
1.4 Wireway and electrical conduit	7
1.4.1 Servomotor wiring example	9
1.4.2 Bus cable wiring on LMV5x and AZL doors	
1.4.3 EARTH connection example	
2 AZL display/programming unit	
2.1 LMV5x program operating phases	
2.2 LMV5x program structure	
2.3 Burner ID number	13
2.4 Password	14
2.4.1 Access to service levels by password	14
2.4.2 Password Logout	
2.4.3 Changing password	
3 Thermostatic series and safety loop	
4 Actuators	
4.1 Addressing the actuators	16
4.2 Actuator doors configuration	17
4.3 Setting the actuator speed	17
5 Setting the load controller	18
6 Setting the probes and set-points	19
6.1 Configuration of a temperature probe at X60 door	19
6.2 Configuration of a pressure or a temperature probe type at X61 door	20
6.2.1 Configuration of a pressure or a temperature probe signal at X61 door	20
6.3 Configuration of the X62 door input signal	20
6.4 Setting the setpoint and the burner and the PID operative band	21
6.4.1 Set-point	21
6.4.2 SD_ModON e SD_Mod Off	21
6.4.3 PID control parameters	22
6.5 Setting functions "TL_ThreshOff" and "TL_SD_On"	23
7 VSD Standardization	
8 SPECIAL POSITIONS	25
8.1 Ignition position	25
8.2 Prepurge position	25
8.3 Home position	25
8.4 Postpurge position	25
9 ADJUSTING THE AIR/FUEL RATIO CURVES	26
9.1 Fuel burner settings - curve-points	26
9.2 Setting the load points output (burners with no FGR)	27
10 Configurations for burner with FGR	30
10.1 Recommendations	30
10.2 Address and activate the AUX3 servomotor.	31
10.3 Setting the special positions	32
10.4 Setting the load controller mode: see the previous chapter (regolazione senza FG	R)32
10.5 FGR mode choice	33
10.6 Main parameter of the FGR function	34
10.7 Example of FGR factor and FGR Maps Factor on the burner regulation	35
11 Cold start thermal shock (CSTP)	36
12 BURNER MANUAL OPERATION	38

1 WIRING RECOMMENDATIONS

1.1 Earthing


1.1.1 TN earthing system

For the LMV5x-System it is preconditioned that a TN earthing system is used.

In a TN earthing system, one of the points in the generator or transformer is connected with earth, usually the star point in a three-phase system.

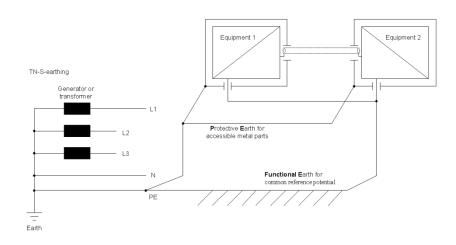
TN-S: PE and N are separate conductors that are connected together only near the power source. This arrangement is the current standard for most residential and industrial electric systems in North America and Europe.

TN-C-S: Combined PEN conductor from transformer to building distribution point, but with separate PE and N conductors in fixed indoor wiring.

LMV system must be connected to earth (PE). Δ Volt must be 0 V between N-PE.

NOTE: PE = protection earth, it is not FE

FE = functional earth

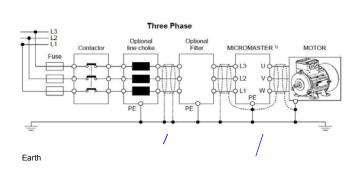

1.1.2 Protective Earth (PE) and Functional Earth (FE)

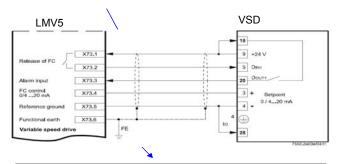
Protective Earth (PE):

Known as an equipment grounding conductor, avoids hazards by keeping the exposed conductive surfaces of a device at earth potential.

To avoid possible voltage drop no current is allowed to flow in this conductor under normal circumstances, but fault currents will usually trip or blow the fuse or circuit breaker protecting the circuit.

For example: burner body or the third wire in a 3 wire cable (N L $\!$ E)


Functional Earth (FE):


Is not intended for shock protection. It is used for a common reference potential.

For example: cable shields.

1.2 .Frequency inverter / Variable Speed Drive (VSD)

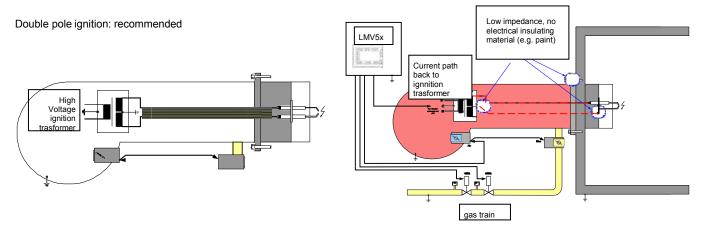
A VSD is one of the strongest EMC sources in a boiler house, so the following is recommended:

Note: If the LMV5 is mounted in a cabinet, alternative to $(X73.6 \ / \ FE)$, also a connection with the PE- rail in the cabinet is possible

Use only VSD with EMC- filter!

Cable from VSD to the fan motor (Line voltage)

Use a <u>complete separate and shielded cable</u> from the VSD to the fan motor! Connect the shield at VSD- <u>and</u> at the motor- side with PE. Details and further information see related VSD- documentation.


Cable from LMV5 to VSD (Low voltage)

Use a shielded cable from LMV5 to VSD. The shield of this cable has to be connected only at LMV5 side with X73.6 (FE), not at the VSD side:

1.3 Ignition electrodes and transformers

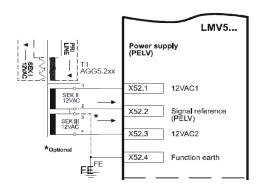
The Ignition is also one of the strong EMC sources, so the following is recommended:

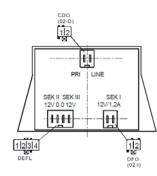
- Keep the cable loop/length in the high voltage ignition circuit as short as possible.
- Use special EMC-ignition cable
- Avoid capacitive and inductive coupling to other signal paths.
- Use separate wiring for the ignition high voltage cable, with max. possible distance to other cables and to the burner housing.
- e.g.: use a electrical insulating conduit or distance parts (e.g. plastic material), see also Appendix "Example for wiring, earthing and shielding the LMV5-System"
- Prefer a double pole ignition (see drawings below).
- When using a double probe ignition, the cables should be run close together to ensure that the area of emissions is as small as possible.

If a single pole ignition must be used, it is very important to have a low impedance at the mechanical connections (no insulation material, e.g. paint), because than you get a **good** current path from the ignition spark back to the ignition transformer, that results in **low** EMC-emissions:

If you have high impedance at the mechanical connections, e.g. caused by paint, you get <u>bad</u> multiple current paths from the ignition spark back to the ignition transformer, that results in <u>high</u> EMC-emissions

1.3.1 Recommendations

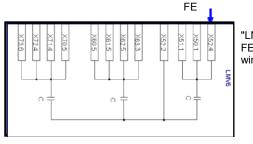

It is recommended to use a metal "mounting plate" for the LMV5 Base Unit and the TransformerAGG5.220.


Use this plate to provide the Functional Earth (FE), see also /EARTH connection example

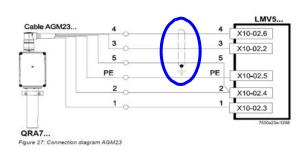
The connection of the FE to the LMV5 has to be made by connecting the X52.4 terminal with FE!

Follow exactly the shield and earth connection in the wiring diagram

In some cases connecting the terminal X52.2 with FE results in an improved EMC- immunity of the LMV5. Make this connection and check the result, if there is no improvement, remove this connection.


The FE is wired LMV- internal to the terminals for the shields (e.g. for Temperature- & Pressure- Sensors, ...), see "4. Shielding"

To have a good connection of FE to the actuators SQM4/9, make certain that there is a proper electrical contact between the housing of the actuators and FE.


If necessary connect the actuators SQM45/48/91 with a separate cable with the maximum possible diameter to FE, see also Appendix "Example for wiring, earthing and shielding the LMV5-System"

1.3.2 Shielding

The LMV5-FE-terminals for the snields are LMV5 internally connected with X52.4, this terminal must be connect external with FE!, see also "3.3". The shield terminals for the CAN-Bus (X50.1, X51.1) are connected direct with X52.4, the other shield terminals are connected via capacitors to prevent DC- current.

"LMV5 connection to FE and internal wiring"

For the cables listed below use shielded cables:

For the CAN-Bus cable use AGG5.631 and/or AGG5.641 together with AGG5.110 = CAN bus connection shield, for connecting the CAN bus to the basic unit. More details see page 36 "Installation Guide CC1J7550.1"

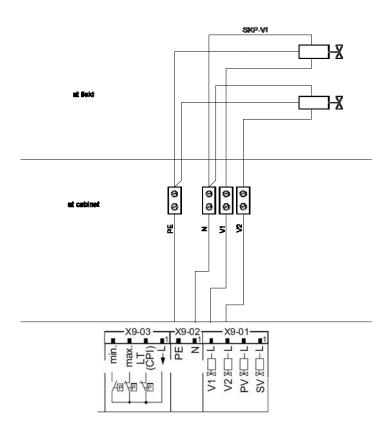
- Cables for the VSD:
- Line voltage cable VSD Fan motor
- Low voltage cable LMV5 VSD (terminals X73)
- Cables for Temperature or Pressure sensors, set points, load output at the LMV5 Base Unit: X60, X61, X62, X63
- Cables for the Fuel Counters at the LMV5 Bas Unit: X71, X72
- Cable for the Speed sensor: X70
- Cable for the QGO20 sensor at the PLL52: X81
- Cables for Temperature sensors at PLL52: X86, X87

(only if present) Cable for QRA7- Signal wires no. 3, 4 and 5, for cable length > 10m and < 100m; consider reinforced insulation to signal cable and connect it to PE at the cabinet PE- rail.

1.4 Wireway and electrical conduit

The following cables are recommended for separate wiring;

Complete separate from all other cables:

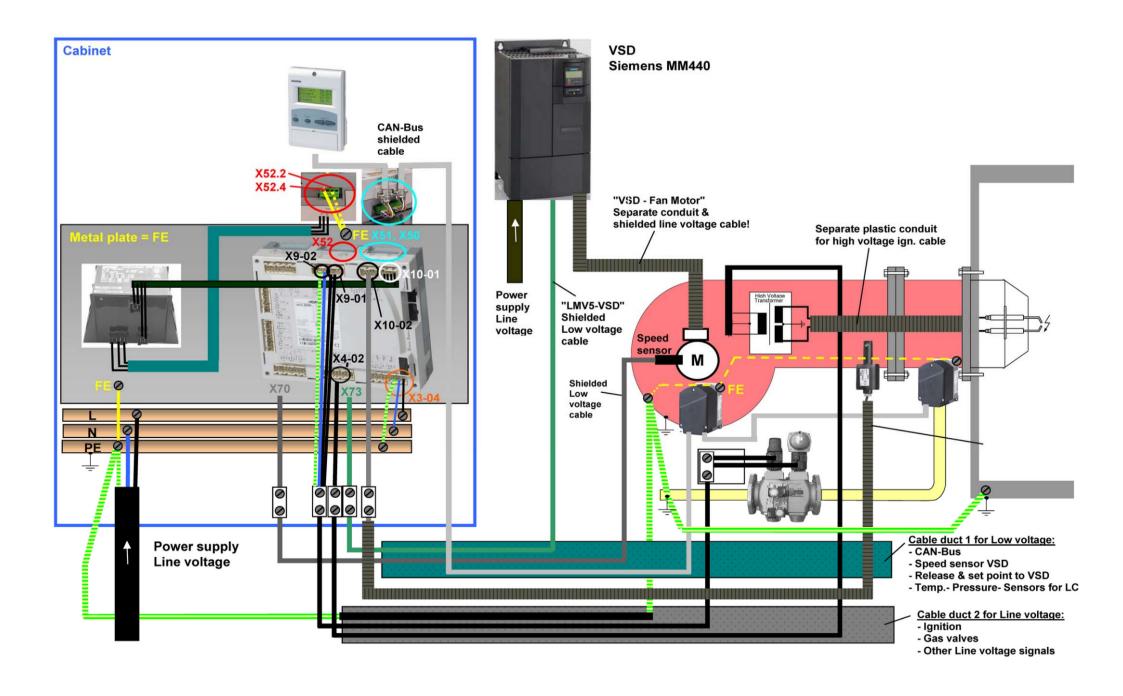

- Cable for "VSD to Fan motor" Line voltage, see also "1. Frequency inverter / Variable Speed Drive (VSD)"
- Cable for ignition high voltage, see also "2. Ignition"
- Cable for the Flame sensors

Together in cable duct 1 for Low voltage, e.g.:

- Cable for CAN-Bus
- Cable for VSD speed sensor, LMV5 X70
- Cable for VSD Release & Set point, LMV5 X73
- Cables for the Load controller: Temperature or Pressure sensor, set point, load output at the LMV5 X60, X61, X62, X63

Together in cable duct 2 for Line voltage, e.g.:

- Cable for Ignition transformer
- Cables for other Line voltage signals, e.g. Gas pressure switches, Air pressure switches,
- Cable for Gas valves SKP/VGD



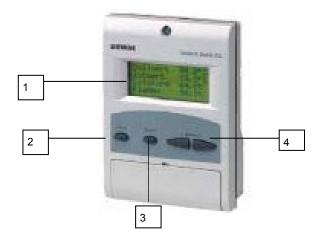
The cables from the LMV5 to the SKP/VGD -Gas vales shall be connected at the LMV5 side with X9-01: L-Valve1, L-Valve2 and with X9-02, N, PE) and connected at the SKP side separate to each SKP.

Example of wiring, see next paragraph Wireway and electrical conduit

NOTE: KEEP SEPARATE SIGNALS CABLES, OUTPUT CABLES, PHOTOCELL CABLE AS SHOWN IN THE BELOW PICTURE

1.4.1 Servomotor wiring example

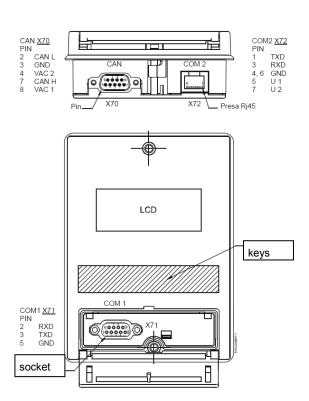
1.4.2 Bus cable wiring on LMV5x and AZL doors.



1.4.3 EARTH connection example

2 AZL display/programming unit

Users can set only the LMV parameters that can be accessed without password: (see "Adjusting the temperature set-point"). The Siemens AZL User Interface allows programming the Siemens LMV control box and monitoring the system data.


The user interface is made of:

display: it shows menus and parameters

ESC key (previous level): it goes back to the previous level menu or exits the programming mode without changing data.

Enter

SELECT keys: they select a menu item and change the parameter values.

AZL5x provides three sockets to interface with other devices:

X70 socket for CAN bus connection: it provides power supply to display also.

COM1 (X71) for connection to PC/laptop by RS232 connector CMO2 (X72) for connection to building automation system by RJ45 connector.

Note: COM1 and COM2 ports do not work at the same time.

Caution: when MODBUS in active, it is not possible to execute the backup via ACS450; if backup is executed the set-point will be missing and the burner will immediately turns off.

2.1 LMV5x program operating phases

Phase number	Description	Sequence
10		Home run
12		Stand by
20,21	Waiting to start realase	Startup
22	Start fan on	Startup
24	Driving to pre-purge	Startup
3034	Pre purging	Startup
36	Driving to ignition pos	Startup
38	Ingnition pos	Startup
40,42,44	Fuel release 1	Startup
50,52	Fuel release 2	Startup
54	Driving to low flame	Startup
60,62	Shut-down low fire	Operation
70,72	Driving to prepurge	Shutdown
7478	Post-prepurging	Shutdown
79	Test Air PressSwitch	Shutdown
8083		Valve proving
01		Safety Phase
00		Lockout

At burner startup, the AZL display shows, one by one, the various phases of the start-up program, until it reaches normal operation phase (Phase 60). LMV5x controller is factory preset. Changing are possible according to the password input

By closing the "thermostat series" and once the start-up sequence is accomplished (from phase 12 to pahse34), the burner is driven to the factory-set ignition position (phase 38).

The burner remains in that position because this is the only one work point in memory.

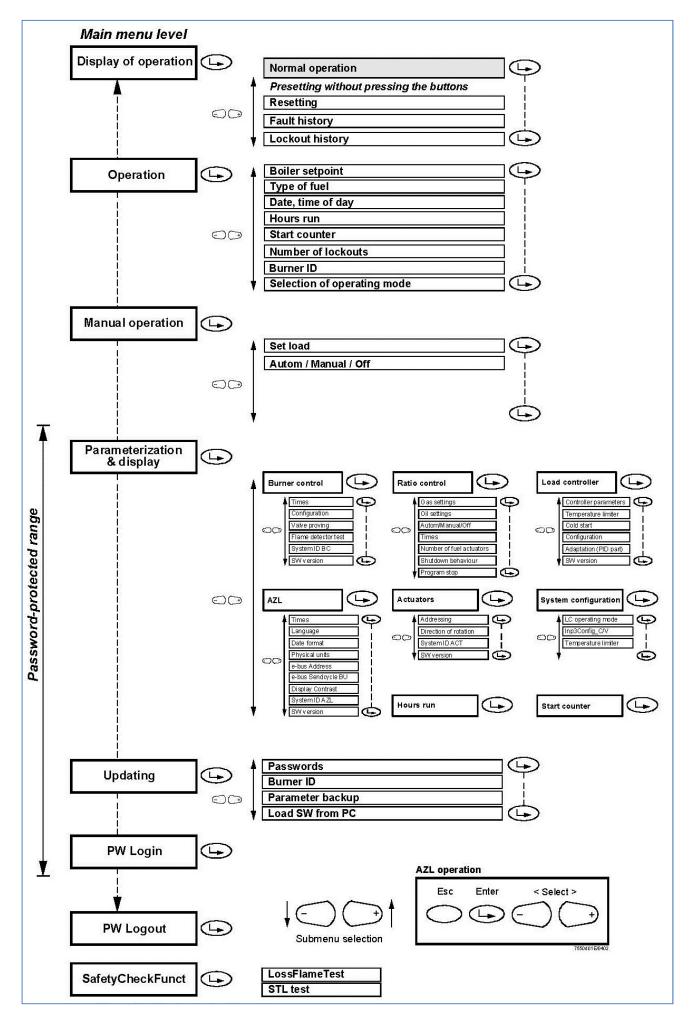
The fuel/air ratio curve must be set, until the maximum load limit (100% output).

During the setting, the actuators move according to the curve points. While the actuators move, always check the combustion analysis, point by point, and the flame stability.

The fuel/air curve points must be set during the commissioning, by a qualified operator.

CAUTION! The procedure requires a password: qualified personnel only must check all changes to combustion parameters by means of the combustion analyzer. Remember that the password will elapse if no key is pressed for a certain period. The unit will ask for the password again

ATTENTION! During the cold start phase, it is necessary to set the burner load. Too low output values could damage the combustion head, blast tube, oil nozzle (if present). The minimum working point must be set by qualified personal.



CAUTION!: check the combustion analysis, point by point, and the flame stability.

ATTENTION! Set the real load output percentage at the corresponding curve-point on AZL during the burner regulation.

2.2 LMV5x program structure

NOTE:

- (1) only for LMV52.400, LMV51.300 without temperature compensation
- (2) only for LMV5.200 (controlling the oxygen level in the exhaust gas flue) and LMV52.400 (monitoring the oxygen level in the exhaust gas flue, a lock out occur if a limit value is overcoming)
- (3) Only for LMV51.300 (in this case VSD cannot be used), LMV52.xxx

ATTENTION: LMV51.300: HAS ONE AUX. IT CAN BE SET FOR FGR OR VSD OR "VSD AND FGR" TOGETHER

ATTENTION: IT IS RECOMMENDED TO NOT USE 02 MONITORING IF FGR IS INSTALLED AND ACTIVE

2.3 Burner ID number

The burner ID number corresponds to the **burner serial number**.

NOTE: in case of call to the Service Center, always tell the burner type and serial number (see burner data plate).

NOTE: burner ID number must be set.

Following the below route access to the programming levels of the menu:

1st level	2nd level	3rd level	4th level	5th level	6th level	Description
OperationalStat						
(<u>•</u>	BurnerID					Identification of burner

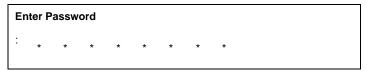
the product ID number is an OEM parameter, entered by the burner manufacturer and it can not be changed; it consist of minimum 4 and maximum 15 characters.

2.4 Password

2.4.1 Access to service levels by password

Depending on password (service or OEM), different parameters are visible.

"Service" parameters, as per the actuator curves and the set-point values, are password protected. The operator must logon using the "9876" password.


"User" level doesn't need a password.

If a password shall be entered, line Enter password is selected by means of decrementing (pointer points to the first character of that line) and then finally selected by pressing Enter.

Then, the pointer jumps to the first position of the password entry line. Now, through incrementing or decrementing, a character (digit or letter) can be selected. A character is confirmed by pressing Enter. If a wrong entry has been made, the last character can be edited again by pressing Esc.

The other password positions can be selected, edited and entered in a similar way. Hence, when making an entry, only 1 character is visible. When the last character of the password is reached, the entry is to be confirmed by pressing Enter.

Display before the first password character is entered:

The example displays when entering the third password character:

En	ter P	assw	ord					
:	*	*	s	*	*	*	*	*

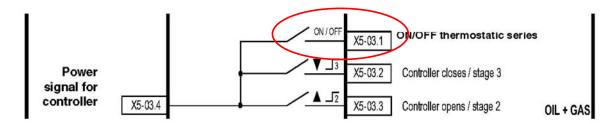
If the check of the password entered is positive, the change to the next menu level takes place. Otherwise, the display returns to the main menu level. To go back to the main menu, press "Esc" until the first level menu is reached, then press the "right arrow" till the first item is reached, then press "Enter" twice.

2.4.2 Password Logout

To avoid customer changes on parameter settings and consequently changes in regulation, the password must be logged out. The "password logout" functions on the first level menu: press to choose "PW Logout" then press "Enter".

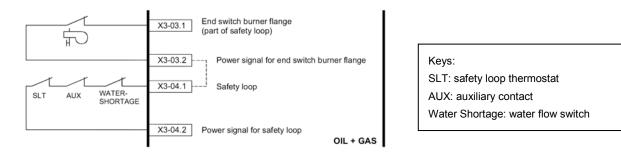
Note: if no key is pressed within a settable period, the password is deactivated automatically.

Note: if a power supply drop occurs to the unit, the password will be automatically deactivated.

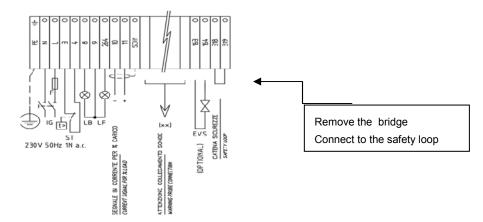

2.4.3 Changing password.

Following the below route access to the programming levels of the menu by means the Esc

1st level	2nd level	3rd level	4th level	5th level	6th level	Description
Updating						
(Password					To change password
	<u></u>	ServicePassword				For service only
	<u></u>	OEM Password				For OEM only


3 Thermostatic series and safety loop

The burner shuts down properly when the thermostatic series (X5-03.1 and X5-03.4 - terminals 3 and 4 of the burner terminal block) opens. In this way, before shut-down, the burner drives to the minimum load, then the fuel valve will close. The post-purging phase will be performed if set. By re-closing the thermostatic series, the burner will start-up again.



In the plant other safety devices are provided (levels, pressure switches, thermostats, air damper). All these contacts are connected in series to the 318-319 terminals of the burner supply terminal block. When the safety loop closes, the burner is ready to restart. The actuators move to "home position" (standby position), and if terminals 3-4 are closed the start-up cycle resumes; otherwise the burner enters the standby phase.

In the plant the safety thermostat is provided as well. If this thermostat switches (terminals X3-04.1 e X3-04.2 corresponding to terminals 318 and 319 of the burner supply terminal block - see below), the system will lead to an immediate burner lockout.

In case of burner designed with automatic pull-out system from the generator, the burner flange end switch is connected to terminalsX3-03.1 e X3-03.2. If the contact open, the burner automatically shuts down.

NOTE: When the safety loop opens, the burner will immediately turns off, skipping the low flame stage. It's important to distinguish between "safety loop" and "thermostatic series"

The maximum number of emergency shut-downs is 16. When this number is reached a lockout will occur AZL will show the message: "Open safety loop".

Following the below route access to the programming levels of the menu:

1st level	2nd level	3rd level	4th level	5th level	6th level	Description
Params & Display						Menu level for making the parameter settings
(BurnerControl					Setting the burner control parameters
	(1)	Configuration				
			RepetitCounter			It sets the maximum number of possible repetitions
				SafetyLoop	116	Default is set on 16

4 Actuators

4.1 Addressing the actuators

The addressing assigns to each actuator its proper function. The addressing is factory set by the burner manufacturer.

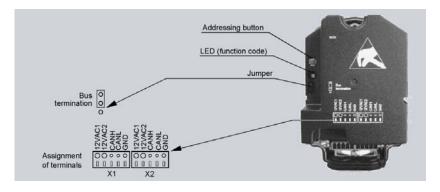
If an actuator must be replaced, it is necessary to address it, otherwise the system will not work. The parameter that sets the actuator function is protected by the Service level password. Remember to check that the jumper "Bus termination" of the last actuator on the CAN bus is set to "On", before starting addressing.

Following the below route access to the programming levels of the menu by means the Esc

1st level	2nd level	3rd level	4th level	5th level	6th level	Description
Params & Display						
	Actuators					
	<u></u>	Addressing				Addressing unad- dressed actuators
		<u></u>	AirActuator GasActuat (Oil) OilActuator AuxActuator 1 AuxActuator 2 AuxActuator 3 (**)			(**) used with FGR

To address an actuator, choose the corresponding actuator and follow the instructions on display:

When the actuator green LED flashes, it means that one of the following function is set according to the number of blinks:


Blinks	Actuator function			
1 blink	air damper actuator			
2 blinks gas butterfly valve actuator				
3 blinks	oil pressure governor actuator			
4 blinks	auxiliary actuator AUX1			
5 blinks auxiliary actuator AUX2				
6 blinks	auxiliary actuator AUX3			

If the burner is equipped with FGR, AUX3 must be used

CAUTION: it is recommended not to adjust the actuators. Anyway, never press the actuator red button, otherwise the fundamental parameters, necessary for the burner operation, will be cancelled. The burner will therefore continuously lock out

In case P1 was pressed for a long time, it will be necessary to perform a new addressing of the actuator.

ATTENTION: when the actuator LV green LED is always lit, it means that the actuator has not been addressed yet or it has been reset and needs to be addressed again.

4.2 Actuator doors configuration

After the adressing of the actuators, it is necessary to activate and to configure the operation way for each servomotor.

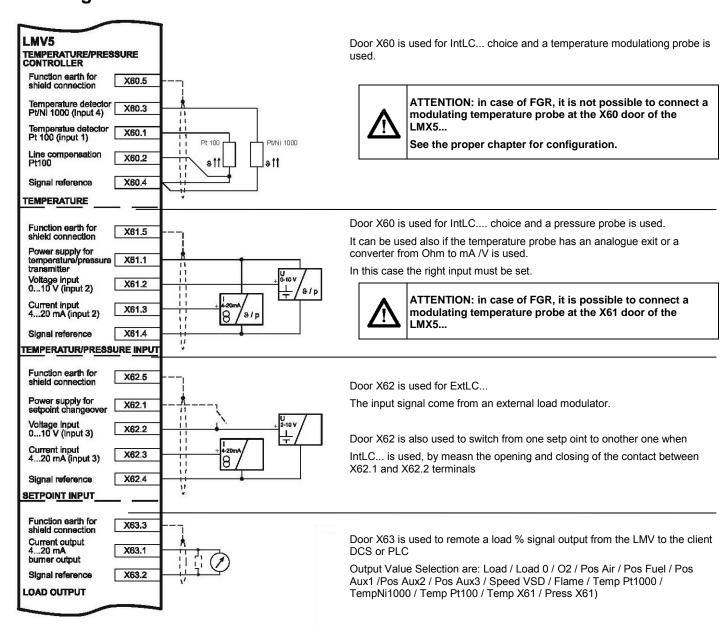
ATTENTION: Activate only the actuators that are really present, otherwise an error will occur.

1st level	2nd level	3rd level	4th level	Possible choices
Params&Display				
	RatioControl			
		Gas/OliSetting		
		<u></u>	AuxActuator	Deactivated
			AirActuator	Activated
			AuxActuator1	Air influencing (only with LMV52x if O2 control is present)
			AuxActuator2	
			AuxActuator3	(values available Only with LMV51.300)
			VSD	VSD = VSD only
			GasActuator	AUX3 = FGR only, without temperature compensation
				VSD+AUX3 = VSD and FGR

LMV 51.300 has the possibility to operate with VGD+FGR without temperature compensation

4.3 Setting the actuator speed

LMV sees VSD as an actuator, that's why the speed ramp up and the stop times must not be higher than the actuator stroke time. If it is necessary to increase the VSD times, change the actuator stroke time also, according to the next procedure. By following the next table, set both parameter "OperatRampMod" and "TimeNoFlame" to set the ramp up/stop times for the VSD and the actuator opening speed (from 0° to 90°).


Following the below route access to the programming levels of the menu by means the Esc

1st level	2nd level	3rd level	4th level	5th level	6th level	Description
Params&Display						Menu level for making the parameter settings
	RatioControl					Parameter settings for fuel/ air ratio control
		Times				
			OperatRampMod	Service	40 s	Operating ramp modulating is the maximum speed of the actuators during operation (phase 60 ÷ 62).
						A setting of 30 seconds generates a maximum speed of 90° in 30 seconds (3°/s).
						The LMV5 calculates an individual speed for each actuator, so that all actuators reach their target positions at the same time.
						Range 1060s
			TimeNo- Flame	Service	40 s	Drive ramp is the speed of the actuators when traveling to the home, prepurge, ignition, and postpurge positions.
						A setting of 10 seconds generates a maximum speed of 90° in 10 seconds (9°/s).
						Range 10120s

ATTENTION: It is suggested to set the ramp up and stop time to a value about 35% lower then the slowest actuator.

5 Setting the load controller

IntLC....must be set together with a modulating probe (temperature or pressure). The probe and its signal must be configured. Doors allowed are X60 for temperature probe and X61 for pressure probes or analogue output probes.

ExtLC... must be set together with an external input signal of modulation (analogue or bus) coming from an external output modulator. The input must be configured. Doors allowed are X62 for the type of signal choice.

Following the below route access to the programming levels of the menu

1st level	2nd level	3rd level	4th level	5th level	6th level	Description
Params & Display						Menu level for making the parameter settings
	LoadController					Settings for the internal load controller
	<u></u>	Configuration				General con- figuration of the load con troller
		<u></u>	LC_OptgMode			Operating mode with load control- ler
				ExtLC X5-03 Int LC Int LC Bus Int LC X62 Ext LC X62 Ext LC Bus		See below.

ExtLC X5-03 = three-point external controller (X5-03 terminals)

Int LC = internal controller (LMV5x) (it switches between 2 set points, W1,W2 set thought AZL. the switch from W1 and W2 is realized opening/closing the LMV5x... terminals X62.1, X62.2).

Int LC Bus = internal controller and set point setting via bus connection

Int LC X62 = internal controller (LMV), but set point is externally controlled by means of a voltage/current signal on X62 terminals

Ext LC X62 = external controller, the burner output is controlled by means of a voltage/current signal on X62 terminals

Ext LC Bus = external controller, the burner output is controlled via bus

ATTENTION: in case of FGR, it is not possible to connect a modulating temperature probe at the X60 door of the LMX5... See the proper chapter for configuration.

6 Setting the probes and set-points

If the LMV5x internal load controlled is used, a temperature or pressure probe can be connected to the terminal X60 or X61. In this case, set the type of probe and its operating range.

6.1 Configuration of a temperature probe at X60 door

ATTENTION: If the external load controller is set do not connected to terminals X60 or X61.

ATTENTION: If the burner is equipped with FGR with temperature compensation a Pt1000 must be set.

ATTENTION: Depending on the sensor, the value is visualized as °C or bar.

Following the below route access to the programming levels of the menu by means the Esc

2nd level	3rd level	4th level	5th level	6th level	Description
					Menu level for making the parameter set- tings
LoadController					Settings for the internal load controller
	Configuration				General configuration of the load controller
		Sensor Select			Select actual value input
		①	Pt100 Ni1000 Temp sensor Press sensor Pt100Pt1000 Pt100Ni1000		See the table below for the meaning of the choice.
	LoadController	LoadController Configuration	LoadController Configuration Sensor Select	LoadController Configuration Sensor Select Pt100 Ni1000 Temp sensor Press sensor Pt100Pt1000	LoadController Configuration Sensor Select Pt100 Ni1000 Temp sensor Press sensor Pt100Pt1000

Possible settings are:

Probe	Description
Pt100	Temperature sensor Pt100 at the input X60, internal temperature limiter function = activated
Pt1000	Temperature sensor Pt1000 at the input X60, internal temperature limiter function = activated
Ni1000	Temperature sensor LG-Ni1000 at the input X60, internal temperature function = activated
TempSens	Temperature sensor at the input X61, internal temperature switch function = deactivated
PressSens	Pressure sensor at the input X61, internal temperature switch function = deactivated
	Temperature sensor Pt100 at input X60 for temperature controller and temperature limiter function and temperature sensor Pt1000 at input X60 additionally for temperature limiter function
	Temperature sensor Pt100 at input X60 for temperature controller and temperature limiter function and temperature sensor LG-Ni at input X60 additionally for temperature limiter function.
No Sensor	No actual value sensor (e.g. in the case of external predefined loads and without internal temperature limiter).

ATTENTION: If a boiler second probe is to be connected to terminals (1000 Ohm only), internal functions TL_ThreshOff and DiffIntervTL_SD_On are activated automatically (see paragraph <u>SETTING FUNCTIONS "TL_ThreshOff" AND "TL_SD_On"</u>).

6.2 Configuration of a pressure or a temperature probe type at X61 door

ATTENTION: If the external load controller is set do not connected to terminals X60 or X61.

If a modulation probe is connected to the X61 terminal, proceeding as follows:

1st level	2nd level	3rd level	4th level	5th level	6th level	Description
Params & Display						Menu level for making the parameter set- tings
	LoadController					Settings for the internal load controller
	(Configuration				General configuration of the load controller
		<u> </u>	Ext Inp X61 U/ I			Configuration of external input X61
				420 mA 210 V 010 V 020 mA		Set the proper value according to the probe output.

6.2.1 Configuration of a pressure or a temperature probe signal at X61 door

Once the pressure sensor signal type is set, the sensor range must be set as well, proceeding as follows:

1st level	2nd level	3rd level	4th level	5th level	6th level	Description
Params&Display						Menu level for making the parameter settings
	LoadController					Settings for the internal load controller
		Configuration				General configuration of the load controller
		<u></u>	MRange PressSens			End of pressure measuring range for input X61
			(099.9 bar	099.9 bar	Set the probe value
				02000 °C	02000 °C	

Example: if a max 10bar Siemens sensor is used, the voltage output signal will be 0 V at 0 bar, while the 10 V signal will correspond to its maximum pressure 10 bar. If the sensor is replaced with a max 16bar one, the 0 V output signal will correspond to 0 bar, while the 10 V output signal will correspond to 16bar pressure: the parameter "MRange Press-Sens" has to be set at 16bar.

6.3 Configuration of the X62 door input signal

Following the below route access to the programming levels of the menu by means the Esc

1st level	2nd level	3rd level	4th level	5th level	6th level	Description
Params & Display						Menu level for making the parameter settings
•	LoadController					Settings for the internal load controller
		Configuration				General configuration of the load controller
			Ext Inp X62 U/I			Configuration of external input X62: input signal on X62 can change setpoint or control the load
				420 mA		According to the external modulator output.
				210 V		
				010 V		
				020 mA		

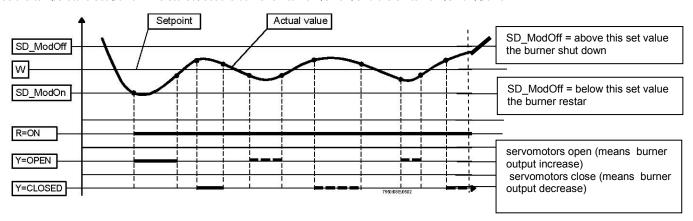
If a boiler second probe is to be connected to terminals (1000 Ohm only), internal functions TL_ThreshOff and DiffIntervTL_SD_On are activated automatically (see paragraph <u>SETTING FUNCTIONS "TL_ThreshOff" AND "TL_SD_On"</u>).

6.4 Setting the setpoint and the burner and the PID operative band.

6.4.1 Set-point

To set the temperature set-point value, that is the generator operating temperature; proceed as follows.

1st level	2nd level	3rd level	4th level	5th level	6th level	Description
Params & Display						Menu level for making the parameter settings
	LoadController					General configuration of the load controller
	(ControllerParam				Controller parameters


It appears the below screen:

SetPointW1	Curr: it shows the current set-point; use the arrows keys to change it. New: it is the new set value. Enter to confirm, otherwise exit without changing by
Curr: 90° New: 90°	pressing ESC. Press ESC one more time to exit the set-point programming mode.

After setting the set-point it is necessary t oset the operation range of the burner. See paragraph SD ModON e SD ModON e

6.4.2 SD_ModON e SD_Mod Off

Once the temperature set-point W1 is stored, set the burner switch-on (SDon) and the switch-off (SDoff) point:

To set these values, choose the item SD_ModOn (SDOn), by scrolling down the "Load controller" menu with the arrow keys and press ENTER:

1st level	2nd level	3rd level	4th level	5th level	6th level	Description
Params & Display				Menu level for making the	Params & Display	
	SD:ModOn			General configuration of the load		SD:ModOn
	SD:ModOff			General configuration of		SD:ModOff

the display will show:

SD_ModOn	SD_ModOff
Curr: 1.0%	Curr: 10.0%
New: 1.0%	New: 10.0%

The **SD_ModOn** default value for this parameter is 1% that is, the burner will light again at a temperature 1% lower than the set-point.

Change value, if needed, by means of the arrow keys; press ENTER to confirm and the press ESC to exit. Press only ESC to exit without changing.

Now choose SD_ModOff always scrolling down the Load Controller menu, by means of the arrow keys, and press ENTER.

The default value for this parameter is10% that is, the burner will turn off at a temperature 1% higher than the set-point.

Press the ENTER to confirm, the press ESC to exit. Otherwise press ESC to exit without changing data. Press the ESC to exit

6.4.3 PID control parameters

The controller's memory contains 5 standard parameter sets.

If required, 1 of these 5 PID triple values can be copied to the storage locations for the actual values so that it becomes active.

PID standard values for the following applications:

1st level	2nd level	3rd level	4th level	5th level	6th level	Description
Params & Display						Menu level for making the parameter settings
•	LoadController					Settings for the internal load controller
		ControllerParam				Settings for internal load controller
		(1)	ContrlParamList			Settings of controller parameter for internal load controller
				StandardParam	Adaption very fast fast normal slow very slow	

It is possible to manually set the PID parameters to any value in the setting range shown below, to activate a PID regulation from the predefined standard values described below (and edit it further if required), or to use the adaption function (self-setting function) instead of making the settings manually. The LMV5... then acquires the PID parameters itself.

See the LMV5x Siemens manual for instructions. Generally the choice of the proper pre-set PID that LMV5x suggest (very fast / fast / normal / slow / very slow) are enough for a proper operation.

Adaption	The values acqu	V5 adaption	
	Хр [%]	Tn [s]	Tv [s]
Very fast (e.g. for small boiler)	42,5	68	12
Fast	14,5	77	14
Normal	6,4	136	24
Slow	4,7	250	44
Very slow (e.g. for large boiler)	3,4	273	48

Table shows the pre set parameter of the PID regulator according to the internal modulator reaction choice.

The parameter $\ensuremath{\mathsf{Xp}}$ is the proportional band in % of the set-point

6.5 Setting functions "TL_ThreshOff" and "TL_SD_On"

These functions enable the settable threshold for the immediate shutdown, if value set on TL_ThreshOff is exceeded. The automatic restart is performed for values lower than the one set on TL_SD_On.

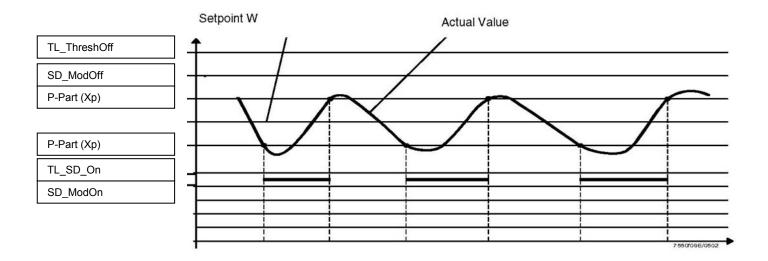
On display, values detected by temperature/pressure probe are shown at the same time.

TL_ThreshOff turns the burner off if temperature exceeds the set value. Gas/Oil valves are suddenly closed.

TL_SD_On automatically restart the burner if the temperature is lower than the set value.

SD_ModOff automatically turns the burner to low flame and then shut down the burner if temperature exceeds the set value.

SD_ModOn automatically restart the burner if the temperature is lower than the set value.


P-Part (Xp) proportional band of modulation.

Note: this function is available if a Pt100 Ni1000 or Pt 1000 temperature sensor is connected to X60.3 and X60.4 terminals.

ATTENTION: basically, these parameters provide a function similar to the safety thermostat one, but can not replace it. The boiler must **always** operate with its safety thermostat connected properly.

NOTE: the parameter TL_ThreshOff for the immediate shutdown, must always be set to a value higher than the SD_ModOff threshold for the normal shutdown. TL_SD_On must be set at a higher temperature than SD_ModOn.

Following the below route access to the programming levels of the menu by means the Esc

1st level	2nd level	3rd level	4th level	Range	Default	Description
Params & Display						Menu level for making the parameter set- tings
	LoadController					Settings for the internal load controller
	•	TempLimiter				Settings for the temperature limiter function
		•	TL_ThreshOff	02000 °C	95°C	Temperature limiter OFF threshold, in °C
		(1)		-500% TL_Thresh_Off	- 5%	Temperature limiter switching differential ON

7 VSD Standardization

Motor standardization (speed acquisition) allows the LMV unit to control the motor rounds at the maximum frequency signal coming from the VSD. A temporary standardization is factory set only for test purpose. The definite standardization must be performed on site by the Service Center (only if the fan is supplied), before the plant test.

ATTENTION: To perform standardization, the burner must be in stand-by mode, not it lockout stage. The Safety loop must be closed (X3-04).

Following the below route access to the programming levels of the menu by means the Esc

1st level	2nd level	3rd level	4th level	5th level	Range	Description
Params & Display						Menu level for making the parameter settings
•	VSD Module					Settings for the VSD module
	•	Configuration				
			Speed			
			(Standardization process for fan speed

By activating the standardization, without starting the burner up, the air actuator drives to ites maximum opening. Then the fan motor stars and the VSD drives the motor to its maximum speed. The speed sensor, mounted on the motor, detects the rpm value. LMV stores the data and the motor stops.

\triangle	ATTENTION: do not enter manually the rpm value of the motor data plate on parameter "StandardizedSp".
Λ	ATTENTION: the power cable that connects VSD to motor must be screened.

8 SPECIAL POSITIONS

8.1 Ignition position

The ignition point is independent from the other curve points of the air/fuel ratio curve.

As far as dual fuel burners, the ignition point set for the gas operation does not depend on the one set for the oil operation. LMV5x allow two different ignition position for gas mode and oil mode.

The burner is provided with a factory-set ignition point, to make easier the first ignition procedure by the Service Centre.

The air actuator at the ignition point, is factory set at a 6°/7° opening, while the gas actuator is set at 12°/15°. In case of burner provided with VSD, it is suggested to set ignition at 100% VSD frequency.

Following the below route access to the programming levels of the menu by means the Esc

1st level	2nd level	3rd level	4th level	5th level	6th level	Description
Params & Display						Menu level for making the para- meter set- tings
	RatioControl					
		GasSettings OilSettings				Choose according to the fired fuel.
		•	Special Positions			
				IgnitionPos		
				HomePos		
				PrepurgePos		
				PostpurgePos		
					IgnitionPosGas	Set the proper position
					IgnitionPosAir	Set the proper position
				(IgnitionPosAux 1	Set the proper position
				(IgnitionPosAux 2	Set the proper position
					IgnitionPosAux 3	Set the proper position
				(IgnitionPosVSD	Set the proper position

8.2 Prepurge position

Following the same route up to the 4th level, choose the pre-purge position of the servomotors

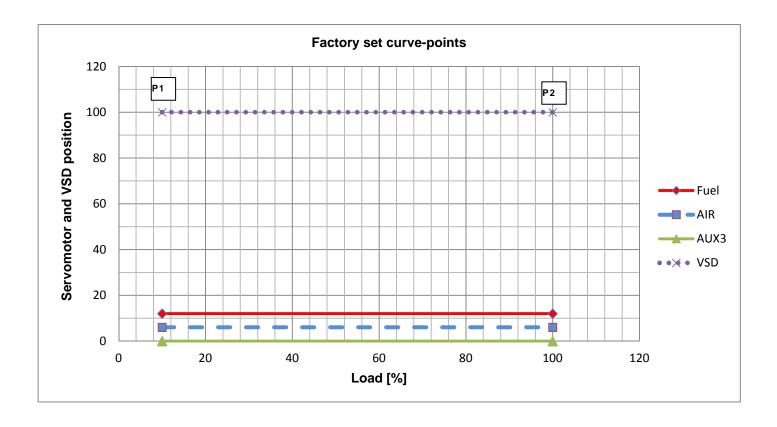
8.3 Home position

Following the same route up to the 4th level, choose the home position of the servomotors

8.4 Postpurge position

Following the same route up to the 4th level, choose the postpurge position of the servomotors

9 ADJUSTING THE AIR/FUEL RATIO CURVES


ATTENTION: when burners are provided with VSD, before setting the air/fuel ratio curves, the Standardization of the motor speed must be performed (see chapter "Standardization").

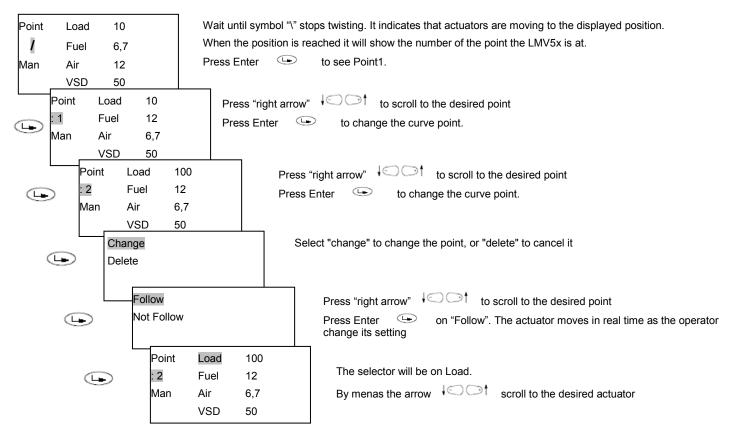
1st level	2nd level	3rd level	4th level	5th level	6th level	Description
Params & Display						Menu level for making the parameter settings
	RatioControl					Parameter settings for fuel/ air ratio control
		GasSettings OilSettings				Parameter settings for firing on gas or on oil
		<u></u>	CurveParams			

9.1 Fuel burner settings - curve-points

Two curve points are factory set (default settings) corresponding to a hypothetic low flame stage

Note: points P1 and P2, are temporally mentioned 10% and 100% load, independently from the actual load. The operator can name the load on each point, without respecting the actual load value in that point. LMV5x will order those points automatically according to the load values set by the operator.

With this setting, by closing the thermostat series, the burner drives to minimum load position **P1**, after ignition. Then it drives to position **P2** without increasing the output, as both the points are set with actuators minimum opening.



ATTENTION: For burners with FGR and LMV52.400, the parameter is set to "deactivated".

9.2 Setting the load points output (burners with no FGR)

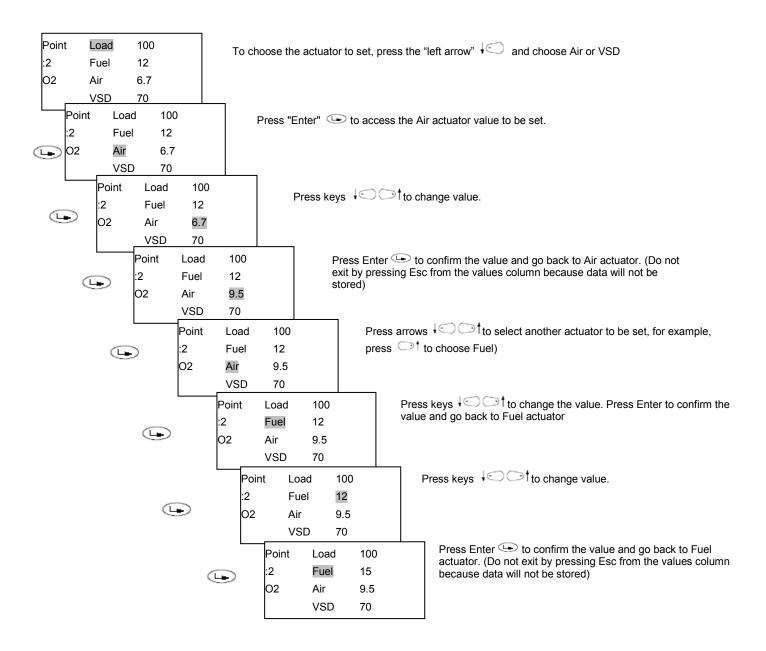
Following the below route access to the programming levels of the menu

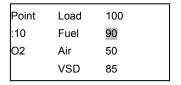
1st level	2nd level	3rd level	4th level	5th level	6th level	Description
Params & Display						
	RatioControl					Parameter settings for fuel/ air ratio control
	(GasSettings GasSettings				Parameter settings for firing on Gas or on Oil
		(CurveParams			At this level, the air/fuel ratio during operation is to be set.

Now it is possible to change Point2 with the next procedure

Checking continuously the air excess means of the combustion analyzer, increasing by few degrees* the air damper opening and the VSD if provided. Then increase by few degrees* the gas butterfly valve (or the fuel actuator). Go on step by step, until the butterfly valve complete opening is reached (actuator at 90° - see diagram).

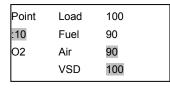
The target is to reach the gas butterfly valve maximum with a sufficient excess of air. While progressively increasing the actuator positions, besides increasing the air quantity the fuel rate must be controlled by means of the valve pressure governor, in order to not exceed the requested maximum flow rate


Once the gas butterfly valve maximum opening is reached, adjust the fuel **rate** only acting on the gas valve pressure governor (or on the oil pressure governor in case of oil).


ATTENTION: as for "increasing by few degrees" it means that the increasing must be performed in order to avoid great excess of air or defect of air.

Therefore the increasing operation must be performed always checking the flue gas analysis by means of the combustion analyzer. It is recommended to make increasing while maintaining O2 % between max 7,5% and min 3%.

It is recommended to save new points increasing the burner output at step odf10÷20% load. Measuring the burner output at the flow meter. In this way, if for any reason, you must interrupt the commissioning and restart it later, you would help yourself.



Checking parameters by means of the combustion analyzer go on increasing the Air (and/or VSD if provided) and the Fuel actuators. At the end the last point will be set.

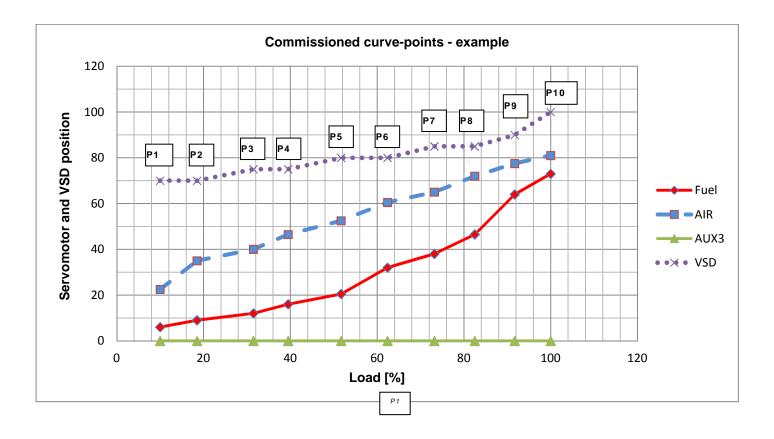
Act on the pressure governor to adjust the fuel pressure at the proper value in order to reach the real 100% load of the generator/boiler.

Act only on the AIR or VSD actuators, to adjust the combustion.

An example of final point will be as per the display aside, imaging to set 10 curve-points.

ATTENTION: Set the % output load values, for every curve-point

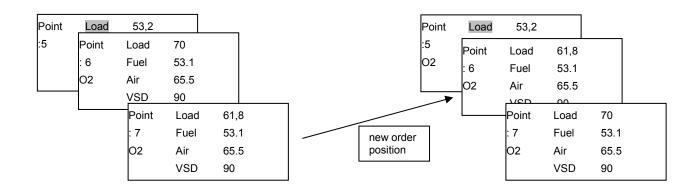
ATTENTION: Adjust actuators position by small changes, always checking combustion parameters.



Caution! For safety reasons, once the maximum load point P2 is set, never go down to the minimum load point P1, without having set the other intermediate points before (see next paragraph).

Caution! In case it is necessary to immediately shut the burner down while working at high flame and the maximum load point is not already set observing the combustion parameters, decrease gas by means of the pressure governor as to drive the burner to a sufficient excess of air, then shut the burner down by the main switch.

At next start-up, start again with point P2 to the minimum load (factory-setting - see previous paragraph) and go on setting the curve points.


ATTENTION: When the maximum load is reached (100%), check again the curve-points. The pressure at the governor has changed and therefore also the gas flow rate to the other points. So, it is necessary to check the adjustment of the points already set.

ATTENTION: for proper operation, it is necessary that the curve of each actuator does not reverse its slope.

ATTENTION: When % load value is changed by user, LMV recalculates all the curve-points according the new load value. It may happen that the point you are adjusting, once saved, is moved to another position.

10 Configurations for burner with FGR

10.1 Recommendations

Note

Reduction of maximum burner output

Use of the flue gas recirculation (FGR) function or the flue gas mass introduced to the supply air duct might lower the burner's maximum output.

This means that the maximum amount of combustion air that can be introduced will be reduced.

It is recommended to consider a proper air excess during the regulation of the burner in order to have to the right O2 content in the smoke, after the flue gas recirculation.

Hence, the amount of fuel for high-fire operation must be reduced to ensure correct combustion values.

Caution!

Temperature-compensated flue gas recirculation (FGR) can be correctly set only when selecting with *DriveLowfire* in operation! A change in the curve point without the corresponding flue gas recirculation temperature (e.g. without driving in operation or in standby) results in an incorrect pairing of the values Flue gas recirculation position and Flue gas recirculation temperature.

This can lead to excessive amounts of recirculated flue gas, which might cause the flame to lift: Stability limit of flame.

Caution

A subsequent change of the curve point without an associated flue gas recirculation (FGR) temperature (e.g. without DriveLowfire in operation or standby) leads to an incorrect pairing of flue gas recirculation-position and flue gas recirculation-temperature.

This can lead to excessive amounts of recirculated flue gas, which might cause the flame to lift: Stability limit of flame.

Note!

Flue gas recirculation (FGR) in combination with O2 trim control Recommendation: Do not use flue gas recirculation (FGR) in combination with O2 trim control.

This has no impact on the use of the O2 alarm.

The physical effects are the following:

1. Pressures have reciprocal effects.

2. The reduction of O2 can lead to a significant increase of NOx levels.

As a result of these reciprocal effects, it is difficult, if not impossible, to adjust fuel-air ratio control, O2 trim control, and the flue gas recirculation (FGR) function.

Even if an adjustment was possible, the flame may become instable during operation, or the required NOx levels might not be reached.

Note!

The full scope of setting *TCautoDeact* is possible only when the flue gas temperature is acquired via the load controller input (X60...).

When the temperature is acquired via the PLL52... input (X86...) and the O2 trim controller / alarm is active (not CtrlAutoDeac), flue gas recirculation (FGR) mode temperature-compensated cannot be used (would lead to error C:F6 D:2).

When operating mode O2 Control is deactivated (man deact), operating mode TCautoDeact can be used if the flue gas temperature is acquired via PLL52... (X86...).

Attention!

If at an dual-fuel burner the FGR function is used for only one fuel (e.g. gas operation with FGR and oil operation without FGR) pay attention to the following:

When the fuel selection is switched over to the fuel without FGR it must be assured that the FGR actuator is closed and is supervised kept in the closed position.

This is accomplished by making the following settings for the fuel without FGR:

- Activation of the AUX3 actuator
- Parameterization of the positions Home, Prepurge, Ignition and Postpurge to closed
- Parameterization of all AUX3 actuator positions at all curve points to closed
- Parameterization of the FGR operating mode to Aux3onCurve

Before to activate the FGR system, it is mandatory to complete the air/fuel ratio curve for each point, up to the maximum burned output. Check the previous chapter for instructions.

WARNING: Activating or increasing the FGR butterfly valve opening, it is mandatory to check the combustion by means a properly and calibrated smoke analyzer.

10.2 Address and activate the AUX3 servomotor.

Usually these operations are already set in the manufacturer factory.

They would be necessary in same cases as: the substitution of the servomotor, in case the FGR mode were not activated yet or the LMV5x were be supplied loose...

WARNING: for LMV52.400 device, in case of FGR servomotor addressing: the only possible choice is AuxActuator3. Don't set the FGR servomotor for a different one.

1st level	2nd level	3rd level	4th level	5th level	6th level	Description
Params & Display						
	Actuators					Parameter settings for fuel/ air ratio control
	(Addressing				Parameter settings for firing on Gas or on Oil
			AirActuator GasActuat OilActuat AuxActuator AuxActuator 2 AuxActuator 3		AuxActuator 3	AuxActuator 3 MUST be chosen

After the addressing, activate the FGR servomotor.

1st level	2nd level	3rd level	4th level	5th level	6th level	Description
Params & Display						
(RatioControl					Parameter settings for fuel/ air ratio control
	<u></u>	GasSettings OilSettings				Parameter settings for firing on Gas or on Oil
			AuxActuator	deactivated damper act VSD active AUX3 VSD+Aux3	Deactivated for LMV52.xxx AUX3 for LMV51.300	Deactivated for LMV52.xxx AUX3 for LMV51.300
		<u></u>	AirActuator	deactivated activated air influen	activated	
			AuxActuator 1			
			AuxActuator 2			
		(AuxActuator 3		Activated for LMV52.xxx	
			VSD			
		(GasActuator OilActuator		Activated Activated	Choice according to the Operation mode gas setting or oil setting.

10.3 Setting the special positions

1st level	2nd level	3rd level	4th level	5th level	6th level	Description
Param & Display						
	RatioControl					
	(GasSettings OilSettings				
		<u></u>	SpecialPosition			

Suggested positions are below. They can be modify during the commissioning according to right needs.

Special Position: AUX3 POS

Home position
 Prepurge position
 Ignition position
 Postpurge position
 Postpurge position
 O° (Closed)
 Poostpurge position
 90° (Open)

10.4 Setting the load controller mode: see the previous chapter (regolazione senza FGR)

WARNING: If one of the intLC (internal Load Controller) option must be choice, a temperature sensor cannot be connected to the terminal X60. A temperature sensor with analogue output or a converter Ohm → mA or V must be used. They must be connected to the terminals X61.

WARNING: If one of the extLC (External Load Controller) options must be used, set "no sensor", "Temperature sensor" or "Pressure Sensor" on the choice for the modulation probe.

WARNING: The X61 door must be configured in according to the used sensor or signal.

10.5 FGR mode choice

1st level	2nd level	3rd level	4th level	5th level	6th level	Description
Param & Display						
	Flue Gas Recirc					
	(1)		AUX3onCurve time temperature temp. contr. TCautoDeact deactMinpos auto deact			According to the preference and instruction in the table below.

Description of the FGR mode.

FGR-Mode	Description	LMV50 LMV51.3 LMV52.2	LMV52.4
Aux3onCurve	Flue gas recirculation (FGR) function is deactivated. Auxiliary actuator 3 is driven along its parameterized ratio control curve	•	•
	After the ignition position, auxiliary actuator 3 is always held at the minimum position for flue gas recirculation (indicated with #) and the flue gas recirculation temperature is not evaluated (display XXX).		
deactivated	This ensures that the system is operated in a safe state if the flue gas recirculation setting could not be fully realized.		•
	We recommend performing burner start-up using this setting prior to setting the flue gas recirculation curve		
Aire -	Auxiliary actuator 3 maintains the ignition position until an adjustable time is reached (parameter "DelaytimeFGR").	_	
	During the operation, the burner regulate its load as per the set curve points, without flue gas recirculation.	•	•
40	Auxiliary actuator 3 maintains the ignition position until an adjustable temperature is reached (parameter "FRG On Temp").		_
temperature	During the operation, the burner regulate its load as per the set curve points, without flue gas recirculation.	•	•
tomp contr	The position of auxiliary actuator 3 is determined depending on the flue gas temperature and the ratio control curve.		
temp.contr.	In addition, the actuator can maintain the ignition position until an adjustable time (parameter FGR On Time \dots) is reached		•
TCautoDeact	Same manner of operation as temp.contr., but the function is automatically deactivated should the flue gas sensor become faulty.		•
	The actuator is driven to the minimum flue gas recirculation (FGR) position and a warning is issued		
	After the ignition position, auxiliary actuator 3 always maintains the minimum flue gas recirculation (FGR) position (indicated by #) and the flue gas recirculation (FGR) temperature is not evaluated		
de e eth diese e e	(display of XXX).		
deactMinpos	The system can thus be driven to a secure state, if it was not possible to fully complete the flue gas recirculation (FGR) settings.		
	It is recommended to use this setting for commissioning the burner before adjusting the flue gas recirculation (FGR) curve		
auto deact	Flue gas recirculation (FGR) with temperature compensation was automatically deactivated. Same operation mode as deactMinpos, but a warning is issued		•

10.6 Main parameter of the FGR function

Parameter	Description	LMV50 LMV51.3 LMV52.2	LMV52.4
DelaytimeFGR Gas DelaytimeFGR Oil	Setting of delay time for auxiliary actuator 3 to be kept in the ignition position after entering phase OPERATION	•	•
ThresholdFGR Gas ThresholdFGR Oil	Setting of temperature that must not be exceeded so that auxiliary actuator 3 can be kept in the ignition position	•	
FGR-sensor (X86 PtNi1000 / X60 Pt1000 / X60 Ni1000)	Selection of temperature sensors for temperature-compensated flue gas recirculation (FGR)	•	•
	Readjustment of calculated temperature-dependent position of auxiliary actuator 3. The setting is made in steps of 1%.		
	100% means no readjustment.		
Factor FGR Gas	Settings <100% reduce the amount of recirculate flue gas (moving the damper toward the fully closed position).		
Factor FGR Oil	The factor has an impact only when there is a deviation from the learned flue gas recirculation (FGR) temperature.		•
	This means that when reaching the initially acquired flue gas recirculation (FGR) temperature, the stored position is approached, independent of the flue gas recirculation (FGR) factor.		
	See the Examples of tables showing the damper positions with FGR		
	Minimum limitation of position of auxiliary actuator 3 for temp.comp. and TCautoDeact modes.		
FGR MinPos	The setting is made as an absolute value and ensures that flue gas recirculation (FGR) always operates with at least a minimum amount of flue gas.		•
	The position is also used to ensure a defined damper position for emergency operation or automatically deactivated flue gas recirculation (FGR)		
	Maximum limitation of the required position of auxiliary actuator 3 calculated from the current temperature and the warm position.		
FGR MaxPos Fact	The setting is made in steps of 1% and refers to the relevant curve-point. Interpolation between the curve-points is linear		•

The parameter are in side the AZL menu with following structure:

1st level	2nd level	3rd level	4th level	5th level	6th level	Description
Param & Display						
	Flue Gas Recirc					
		FGR-sensor	X60 Pt1000 X60 Ni1000			According to the available probe
		ThresholdFGR Gas ThresholdFGR Oil	0850 °C			According to the regulation needs
		DelaytimeFGR Gas DelaytimeFGR Oil	063 min			According to the regulation needs
		Factor FGR Gas Factor FGR Oil	10100%			According to the regulation needs
		FGR MinPos				According to the regulation needs
		FGR MaxPos Fact	0100%			According to the regulation needs

WARNING: Only in case of FGR temperature compensation function.

If the detected temperature value is lower than the value recorded during the curve setting, the AUX3 servomotor doesn't reach the set position, but it will be closer. In this condition flue gas recirculation flow could be not sufficient or too much.

NOx value could be different from the expected or the flame could be instable. Try to reduce the correction factor ("Factor FGR Gas" or "Factor FGR Oil"). In case readjust the FGR curve. Probably the point was saved also if the flue gas temperature were too far from the regime condition.

10.7 Example of FGR factor and FGR Maps Factor on the burner regulation.

We consider to set the AUX3 for FGR with the "temp.contr." Mode

The curve is as per the below table.

Point	1	2	3	4	Note
Load %	37,5 %	62,5 %	75 %	100 %	
AUX3 FGR Curve	19,3 °	25,0 °	28,5 °	37,0 °	
FGR temperature	72 °C	105 °C	121 °C	150 °C	The flue gas value increase from low to high flame. The temperature is with burner in operative condition.

LMV52.400 will calculate a "Zero Curve" referred to flue gas 0°C temperature.

The "Zero Curve" is calculated in reference to the effect of the temperature on the smoke density.

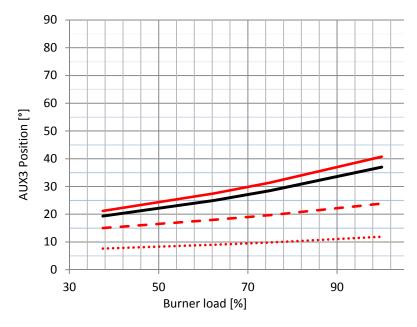
If "FGR factor" is set at 100% LMV will not make any additional correction.

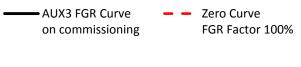
Point	1	2	3	4	Note
Pos. FGR con T = 0 °C zero curve	15 °C	18 °C	19,7 °C	23,8 °C	FGR Factor set on 100%

If "FGR factor" is set at lower value than 100% LMV will apply an additional correction to calculate the "Zero Curve".

If "FGR factor" is 50%, the new "zero Curve" will be

Point	1	2	3	4	Note
Pos. FGR con T = 0 °C zero curve	7,6°	9,0°	9,8°	11,9°	FGR Factor set on 50% The above example shows that – with the zero curve – a flue gas recirculation (FGR) factor of 50% leads to a 50% reduction of the damper positions.


If the temperature value of the smoke during the operation of the burner is higher than the temperature value during the commissioning, the AUX3 position will be bigger than the set values.


To avoid a wide opening of the FGR butterfly valve it could be necessary to limit the automatic correction LMV52.400.

This could be necessary if the AUX3 opening become bigger than 90°, if a flame instability happen, or the flue gas recirculation is too big...

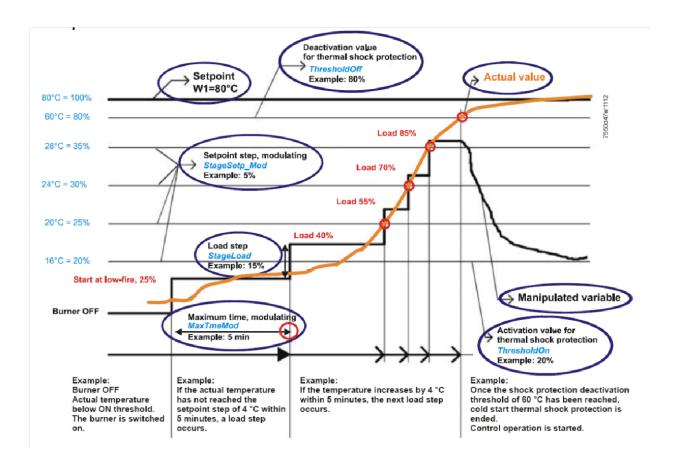
To limit the correction due to a higher temperature value, it become necessary to set the parameter "FGR MaxPOS Factor".

Point	1	2	3	4	Note
Pos. FGR	21,2°	27,5°	31,4°	40,7°	FGR MaxPOS Factor set on 10% I valori sono il 10% in più rispetto ai corrispondenti settati inizialmente.

The LMV52.4... performs a linear interpolation of the damper positions between the setting values and the *zero curve*, depending on the current flue gas temperature.

When the flue gas temperatures lie above the setting values, the calculated damper positions are higher than the setting values.

11 Cold start thermal shock (CSTP)


If there is a steam boiler or a boiler that must start up cold in the plant and to avoid thermal shocks a slow heating is required for the boiler by maintaining the burner at the minimum output, the automatic function "Cold start thermal shock" can be performed instead of the manual operation at minimum load.

The CSTP (Cold Start Thermal Schock) function can be enabled by the Technical service only (access by reserved password). if this function is enabled, when the burner starts up the "Thermal shock protection activated" message will be shown.

If this function is not enabled, after start-up, the burner will rapidly increase the load according to the requested value.

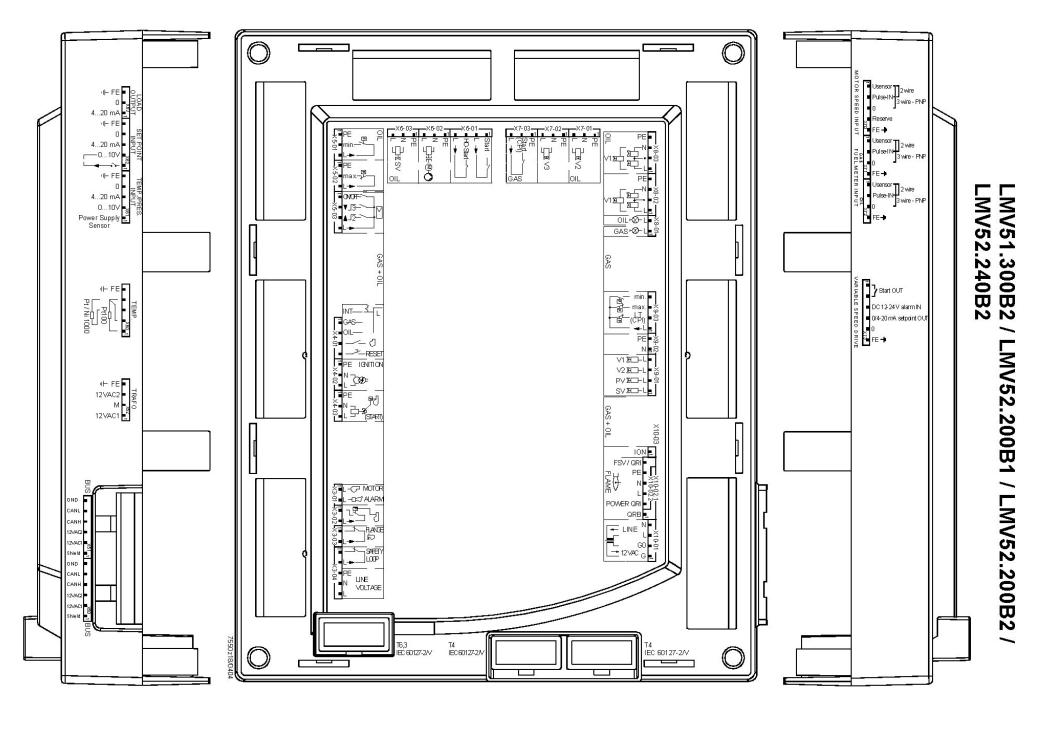
The CSTP function is a Service level paramter, to enable this function proceed as follows:

1st level	2nd level	3rd level	4th level	5th level	6th level	Description
Params & Display						Menu level for making the parameter settings
.	LoadController					Settings for the internal load controller
	•	ColdStart				Settings for the cold start (thermal shock protection)
			ColdStartOn	Deactivated Activated		The parameter ColdStartOn deactivates or activates the Cold start protection function, the other parameters are factory set and can be changed following the next programming rows (see diagram)
			ThresholdOn	0100%Wcurren	20%	
		<u></u>	StageLoad	0100%	15%	
			StageSetp_M od	1100% Wcurrent	5%	
			Stage- Setp_Stage	1100% Wcurrent	5%	
			MaxTme- Mod	163 min	3 min	
		(MaxTmeStage	163 min	3 min	Cold start thermal shock protection, maximum time per step (multistage)
			ThresholdOff	1100% Wcurrent	80%	Cold start thermal shock protection deactivation level referred to the current set-point (Wcurrent)
		(1)	Additional-Sens	Deactivated Pt100 Pt1000 Ni1000	Deactivated	Select extra sensor for cold start thermal shock protection
			Temp Cold- Start	02000 °C		Display of temperature acquired by extra sensor for the cold start thermal shock protection function
			Setpoint AddSensor	0450 °C	60°C	Set-point for extra sensor for cold start thermal shock protection
		(1)	Release Stages	no release/ release	release	Cold start thermal shock protection load step stage mode (multistage operation)
			MaxTmeStage	163 min	3 min	Cold start thermal shock protection, maximum time per step (multistage)
			ThresholdOff	1100% Wcurrent	80%	Cold start thermal shock protection deactivation level referred to the current set-point (Wcurrent)
		(AdditionalSens	deactivated Pt100 Pt1000 Ni1000	deactivated	Select extra sensor for cold start thermal shock protection
			Temp Cold- Start	02000 °C		Display of temperature acquired by extra sensor for the cold start thermal shock protection function
		<u> </u>	Setpoint Add- Sensor	0450 °C	60 °C	Set-point for extra sensor for cold start thermal shock protection
			Release Stages	no release/ release	release	Cold start thermal shock protection load step stage mode (multistage operation)

Note: by enabling the manual operation (this function can be set at user level also -see chapter "manual operation") the CSTP function is momentary excluded, when enabling the automatic operation again, the CSTP function (previously set at Service level) will be enabled as well.

12 BURNER MANUAL OPERATION

The operator can decide if choosing burner manual operation at a settable fixed load or modulating operation through the automatic load controller, then can also set the burner shutdown by means of the "burner off" function.


Choose the type of operation (Au-tom / Manual / Off).

1st level	2nd level	3rd level	Password	Description
ManualOpe- ration				Menu level for activating manual operation with the preselected load
	Au-tom/ Manual/Off			Selection of manual or automatic operation
		Automatic/ Burner on / Burner off	User	

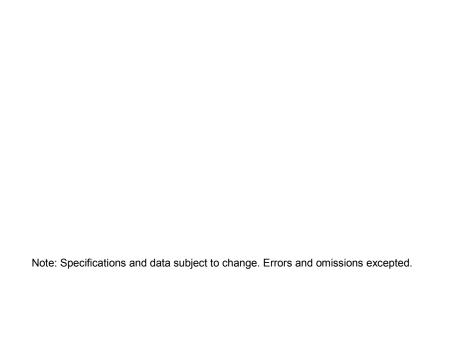
Setting the load percentage for the manual operation

To set the load percentage at which the burner must operate in manual mode, proceed as described below.

1st level	2nd level	3rd level	Password	Description		
ManualOpe- ration	nualOpe- ration			Menu level for activating manual operation with the preselected load		
	SetLoad			Set target load		
	.	0100%	User			

Terminal				+	Description of connection termi- nals	
group	Connec	ction symbol	Input	Output	·	Electrical rating
	PIN1			Х	Fan motor contactor	AC 230 V +10 % / -15 %, 5060 Hz, 1 A, cos.0.4
X3-01	PIN2	MOTOR		х	Alarm	AC 230 V +10 % / -15 %, 5060 Hz, 1 A, cos.0.4
	PIN1		х		Air pressure switch (LP)	AC 230 V +10 % / -15 %, 5060 Hz, Imax 1.5 mA
X3-02	PIN2			х	Power signal for air pressure switch (LP)	
	PIN1		х		End switch burner flange	AC 230 V +10 % / -15 %, 5060 Hz, Imax 5 A
X3-03	PIN2	FLANGE		х	Power signal for end switch burner flange	
	PIN1		х		Safety loop	AC 230 V +10 % / -15 %, 5060 Hz, Imax 5 A
	PIN2	SAFETY		х	Power signal for safety loop	AC 230 V +10 % / -15 %, 5060 Hz, Imax 5 A
	PIN3	L->	х		Protective earth (PE)	112, IIIIax 3 A
X3-04	PIN4	PE LINE	х		Supply voltage neutral conductor (N)	
	PIN5	VOLTAGE	х		Supply voltage live conductor (L)	AC 230 V +10 % / -15 %, 5060 Hz, fuse 6.3 AT (DIN EN 60 127
					Fuel selection "internal" if pin 1-2 is not used	Z / 5)
	PIN1	INT — < L	х		Fuel selection gas	AC 230 V +10 % / -15 %, 5060 Hz, Imax 1.5 mA
X4-01	PIN2	GAS — OIL —	х		Fuel selection oil	AC 230 V +10 % / -15 %, 5060 Hz. Imax 1.5 mA
	PIN3		х		Fan contactor contact (FCC) or flue gas recirculation pressure switch	AC 230 V +10 % / -15 %, 5060 Hz, Imax 1.5 mA
	PIN4	RESET	х		Reset / manual lockout	AC 230 V +10 % / -15 %, 5060 Hz, Imax 1.5 mA
	PIN1			х	Protective earth (PE)	
	PIN2	■ PE IGNITION		х	Neutral conductor (N)	
X4-02	PIN3	N D		x	Ignition	AC 230 V +10 % / -15 %, 5060 Hz, 2 A, cos.0.2
	PIN1			х	Protective earth (PE)	
	PIN2	PE □□		х	Neutral conductor (N)	
X4-03	PIN3	N (START)		х	Start signal or pressure switch relief (air pressure switch test valve)	AC 230 V +10 % / -15 %, 5060 Hz, 0.5 A, cos.0.4

Terminal	Connecti	on symbol	Ħ	Output	Description of connection terminals	Electrical rating
group		T	Input	Out		
	PIN1			х	Protective earth (PE)	
X5-01	PIN2	PE PE	х		, , , , , , , , , , , , , , , , , , , ,	AC 230 V +10 % / -15 %, 5060 Hz, Imax 1.5 mA
	PIN3			х	oil (D\Mmin oil)	AC 230 V +10 % / -15 %, 5060 Hz, Imax 500 mA
	PIN1			х	Protective earth (PE)	
X5-02	PIN2	■ PE ■ max → □	х		, , , , , , , , , , , , , , , , , , , ,	AC 230 V +10 % / -15 %, 5060 Hz, Imax 1.5 mA
	PIN3				Power signal for pressure switch-max-oil (DWmax-oil)	AC 230 V +10 % / -15 %, 5060 Hz, Imax 500 mA
	PIN1	ON/OFF -	х		Controller (ON / OFF)	AC 230 V +10 % / -15 %, 5060 Hz, Imax 1.5 mA
PIN2 X5-03 PIN3 PIN4	▼ 3 ■ 4 2	х		Controller closes / stage 3	AC 230 V +10 % / -15 %, 5060 Hz, Imax 1.5 mA	
	PIN3		х		, ,	AC 230 V +10 % / -15 %, 5060 Hz, Imax 1.5 mA
	PIN4			х	<u> </u>	AC 230 V +10 % / -15 %, 5060 Hz, Imax 500 mA
	PIN1	START —	х			AC 230 V +10 % / -15 %, 5060 Hz, Imax 1.5 mA
	PIN2	 		х	Power signal start release oil	AC 230 V +10 % / -15 %, 5060 Hz, Imax 500 mA
X6-01	PIN3	HO-START	х		Direct heavy oil start	AC 230 V +10 % / -15 %, 5060 Hz, Imax 1.5 mA
	PIN4			x	,	AC 230 V +10 % / -15 %, 5060 Hz, Imax 500 mA
	PIN1			х	Protective earth (PE)	
	PIN2	■ PE		х	Neutral conductor (N)	
X6-02	PIN3	N THE MOO		х		AC 230 V +10 % / -15 %, 5060 Hz, 2 A, cos.0.4
	PIN1			х	Protective earth (PE)	
	PIN2	PE PE		х	Neutral conductor (N)	
X6-03	PIN3	N SV			,	AC 230 V +10 % / -15 %, 5060 Hz, 1 A, cos.0.4


Terminal	Connectic	on symbol	ŧ	Output	Description of connection termi- nals	Electrical rating
group		,	Input	Out		· · · · · · · · · · · · · · · · · · ·
	PIN1			х	Protective earth (PE)	
	PIN2	PE PE		х	Neutral conductor (N)	
X7-01	PIN3	N V2			Fuel valve 2 (oil)	AC 230 V +10 % / -15 %, 5060 Hz, 1 A, cos.0.4
	PIN1			х	Protective earth (PE)	
	PIN2	PE PE		х	Neutral conductor (N)	
X7-02	PIN3	N V3			Fuel valve 3 (oil)	AC 230 V +10 % / -15 %, 5060 Hz, 1 A, cos.0.4
	PIN1			х	Protective earth (PE)	
X7-03	PIN2	PE PE	х		Start release gas CPL (LMV52)	AC 230 V +10 % / -15 %, 5060 Hz, Imax 1.5 mA
	PIN3			x	Power signal (reserve)	AC 230 V +10 % / -15 %, 5060 Hz, Imax 500 mA

Terminal group	Connection symbol		nput	Output	Description of connection termi- nals	Electrical rating
<u>9.0up</u>			<u> </u>	0		AC 230 V +10 % / -15 %, 5060
	71 L L	PIN2		х	Firing on oil	Hz, 1 A, cos.0.4
X8-01	OIL +⊗-L ■ GAS +⊗-L ■	PIN1		x	Firing on gas	AC 230 V +10 % / -15 %, 5060 Hz, 1 A, cos.0.4
		PIN4		х	Protective earth (PE)	12, 17, 000.0.4
	PE =	PIN3		х	Neutral conductor (N)	
X8-02	N =	PIN2		х	Wiring point for valves connected in series	
	V1 X	PIN1		х	Fuel valve 1 (oil)	AC 230 V +10 % / -15 %, 5060 Hz, 1 A, cos.0.4
		PIN4		х	Protective earth (PE)	
	PE -	PIN3		х	Neutral conductor (N)	
X8-03	N N	PIN2		х	Wiring point for valves connected in series	
V1 X	V1 X	PIN1		х	Fuel valve 1 (oil)	AC 230 V +10 % / -15 %, 5060 Hz, 1 A, cos.0.4
		PIN4		х	Fuel valve 1 (gas)	AC 230 V +10 % / -15 %, 5060 Hz, 2 A, cos.0.4
	V1 <u>X</u> L =	PIN3		х	Fuel valve 2 (gas)	AC 230 V +10 % / -15 %, 5060 Hz, 2 A, cos.0.4
X9-01	PV X	PIN2		х	Fuel valve (gas)	AC 230 V +10 % / -15 %, 5060 Hz, 2 A, cos.0.4
	SV 🖫 L 💻	PIN1		х	Fuel valve (shutoff valve-(gas)	AC 230 V +10 % / -15 %, 5060 Hz, 2 A, cos.0.4
		PIN2		х	Protective earth (PE)	
X9-02	PE N	PIN1		х	Neutral conductor (N)	
		PIN4	x		Pressure switch-min-gas, start rele- ase gas	AC 230 V +10 % / -15 %, 5060 Hz, Imax 1.5 mA
	min max max	PIN3	х		Pressure switch-max-gas (DWmax- gas)	AC 230 V +10 % / -15 %, 5060 Hz, Imax 1.5 mA
X9-03	LT (CPI)	PIN2	x		Pressure switch-valve proving-gas / leakage test or valve closing con- tact (CPI)	AC 230 V +10 % / -15 %, 5060 Hz, Imax 1.5 mA
	<u> </u>	PIN1		х	Power signal for pressure switch	AC 230 V +10 % / -15 %, 5060 Hz, Imax 500 mA

			1		1	
Termi- nal group	Connection symbol		Input	Output	Description of connection termi- nals	Electrical rating
		PIN4			Neutral conductor (N)	AC 230 V +10 % / -15 %, 5060 Hz, max 1 mA
	LINE N	PIN3		х	Power signal transformer	
X10-01		PIN2	x		AC power signal GO	AC 12 V +10 % / -15 %, 5060 Hz, max 1.2 mA
	12VAC G0 G	PIN1	х		AC power signal fan motor (G)	
		PIN6	x		QRI (IR detector) / QRA7 signal voltage	Umax DC 5 V
	FSV/QRI =	PIN5		х	Protective earth (PE)	
	PE =	PIN4		х	Neutral conductor (N)	
X10-02	FLAME L	PIN3		х	Power signal	AC 230 V +10 % / -15 %, 5060 Hz, lmax 500 mA
	POWER QRI	PIN2		х	QRI (IR detector) / QRA7 power supply	DC 14 / 21 VC Imax 100 mA
	QRB =	PIN1	х		QRB signal voltage	Max. DC 8 V
X10-03	ION •	PIN1		x	lonization probe (ION) (alternati- vely QRA2/ QRA4.U/QRA10, refer to section <i>Description of inputs and outputs</i>)	Umax (X3-04-PINS) Imax. 0.5 mA
		PIN6		х	Reference ground (PELV)	
	GND -	PIN5		x	Communication signal (CANL)	DC U <5 V, Rw = 120 Ù, level to ISO-DIS 11898
	CANL	PIN4		х	Communication signal (CANH)	
	CANH 12VAC2	PIN3		х	AC power supply for actuators / display and operating unit AZL5	AC 12 V +10 % / -15 %, 5060 Hz, Fuse max. 4 A
X50	12VAC1	PIN2		х	AC power supply for actuators / display and operating unit AZL5	
	Shield -	PIN1		х	Shield connection (functional earth)	
		PIN6		х	Reference ground (PELV)	
	GND -	PIN5		х	Communication signal (CANL)	DC U <5 V, Rw = 120 Ù, level to ISO-DIS 11898
	CANL -	PIN4		х	Communication signal (CANH)	
	CANH 12VAC2	PIN3		х	AC power supply for actuators / display and operating unit AZL5	AC 12 V +10 % / -15 %, 5060 Hz, Fuse max. 4 A
X51	12VAC1	PIN2		х	AC power supply for actuators / display and operating unit AZL5	
	Shield -	PIN1		х	Shield connection (functional earth)	

					(functional earth)	
	4	7 P	PIN4	х		
	- FE F				AC power supply from transformer to	
V50	12VAC2	P	PIN3	х	LMV5 system	AC 12 V +10 % / -15 %, 5060 Hz
X52	м -	P	PIN2	х	Reference ground (PELV)	
	12VAC1 -				AC power supply from transformer to	
		P	PIN1	х	LMV5 system	AC 12 V +10 % / -15 %, 5060 Hz

			1			<u> </u>
Terminal group	Connection symbol		Input	Output	Description of connection termi- nals	Electrical rating
Temperatur	e / pressure controller				1	T
		PIN5	х		Functional earth for shield connec- tion	
	(⊢ FE P	PIN4	x		Reference ground	
		PIN3	х		Temperature sensor input Pt / LG- Ni 1000	
X60	1 0 0	PIN2	х		Line compensation temperature sensorPT100	
	Pt/Ni 1000	PIN1	х		Temperature sensor input PT100	
		PIN5	х		Functional earth for shield connec- tion	
	(⊢ FE ⊨	PIN4	х		Reference ground	
	0	PIN3	х		Current input for temperature / pressure signal 0/420 mA	DC 0/420 mA
	4-20 mA	PIN2	х		Voltage input for temperature / pressure signal DC 010 V	DC 010 V
X61	0-10 V 💻					
	Power Supply Sensor	PIN1		x	Power supply for temperature / pressure transmitter	approx. DC 20 V Max. 25 mA
		PIN5	х		Functional earth for shield connec- tion	
	⊕ FE F	PIN4	х		Reference ground	
	0 =	PIN3	х		Current input for setpoint or load	DC 020 mA
	4-20 mA	PIN2	х		Voltage input for setpoint or load	DC 010 V
X62	0-10 V	PIN1		x	Power supply for setpoint changeo- ver	approx. DC 24 V Max. 2 mA
		PIN3	x		Functional earth for shield connec- tion	
	- FE F	PIN2		х	Reference ground	
X63	0 = 4-20 mA =	PIN1		х	Current output for burner(LOAD OUTPUT)	DC 420 mA, RLmax = 500 £[

PRESCRIZIONI PER COLLEGAMENTI LMV5x

I collegamenti sensibili ai disturbi EMC sono quelli relativi al cavo "bus" (cavo linea servocomandi, PLL52), cavo fotocellula, cavo sensore di giri, cavo segnale 4÷20mA che pilota l'inverter.

I cavi di comando e di potenza (400V e 230V) devono essere sempre separati dai cavi di segnale.

Il cavo "bus" tra quadro e bruciatore e tra bruciatore e scheda PLL52 (utilizzata per regolazione ossigeno) deve essere posato separatamente, lontano da cavi di potenza. Quando sono previsti tratti lunghi, è preferibile inserire il cavo "bus" dentro un tubo o guaina metallica, con le estremità della guaina collegate a massa mediante opportuni collari.

Tra inverter e motore, prevedere cavo tripolare schermato con terra esterna alla schermatura, del tipo FG70H2R+T (vedi Allegato 1).

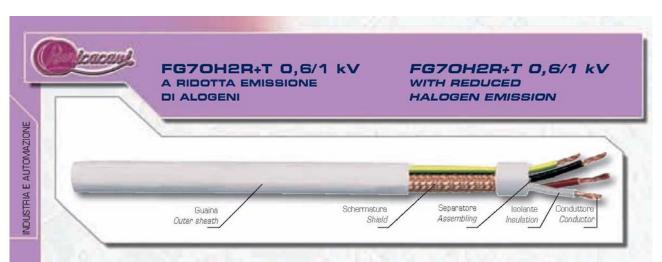
La schermatura deve arrivare fin sotto all'inverter e fino alla scatola motore. La schermatura va collegata alla massa "equipotenziale" da entrambi i lati magari con opportuni collari.

In alternativa si può usare un cavo normale dentro un tubo o guaina metallica, sempre con le estremità della guaina collegate a massa con opportuni collari, e una cordina di terra esterna per la massa motore.

Il cavo del segnale 4÷20mA per comandare l'inverter deve essere del tipo schermato sempre con schermatura solo dal lato LMV5x .Se l'inverter non è all'interno del quadro bruciatore, prevedere anche una posa separata del cavo dentro una guaina metallica sempre messa a terra con collari.

Per il cavo sensore di giri, prevedere cavo tipo "rete Ethernet" cat. 5 o 6 dentro sempre una guaina metallica, messa a massa alle estremità e posata separatamente dal cavo motore.

Siccome il sensore di giri usa 3 fili, si possono dividere le coppie e incrociarle per eliminare i disturbi.


In alternativa si può usare un cavo twistato 3x2x0,50 tipo Liycy (vedi Allegato 2).

Per il cavo della fotocellula QRI, prevedere gli stessi accorgimenti presi per il cavo sensore giri.

Anche per le versioni con regolazione ossigeno, i collegamenti tra sonda ossigeno e PLL52 devono essere fatti con cavo twistato 3x2x0,50 tipo Liycy (vedi Allegato 2).

NB: quando una schermatura è collegata a massa attraverso entrambe le estremità, tali estremità devono essere equipotenziali. Se tra le estremità c'è una qualsiasi tensione, mettere a massa solo una delle due estremità, generalmente quella vicina al componente più sensibile agli EMC. In ogni caso ricordarsi che l'apparecchiatura di controllo del bruciatore deve essere privilegiata ovvero avere il collegamento a massa più vicino delle altre. Ad esempio nel collegamento LMV-Inverter, se la schermatura ha una sola estremità a massa, questa deve essere lato LMV.

Allegato 1 – Esempio di cavo per motore

CARATTERISTICHE TECNICHE

Colore delle anime:		UNEL 00722 / VDE 0293 (Tab. 8)
Conduttori:	rame rosso elettrolitico	normativa CEI EN 60228 CI.5 (Tabella 9
Isolante:	elastomero silanico di qualità G7	normativa CEI 20-11 - CEI EN 50363
Separatore:	nastro poliestere-mylar	
Schermatura:	a treccia capillari di rame rosso elettrolitico cop. > 80	3 %
Guaina esterna:	PVC di qualità TM2	normativa CEI 20-11 - CEI EN 50363
Colore della guaina:	Grigio RAL 7035	
Prova N.P. verticale:	su singolo conduttore o cavo isolato	normativa CEI EN 60332-1-2
Prova GAS emessi:	durante la combustione	normativa CEI EN 50267-2-1
Resistenza agli olii:		normativa CEI 20-34/0-1
Prova N.P.I.:		normativa CEI 20-22/2
Resistenza elettrica:	relativamente alla sezione	normativa CEI EN 60228 (Tabella 9)
Tens. nominale Uo/U:	0,6/1 kV	
Tensione di prova:	4000 V	
Temperatura d'esercizio:	(-25 °C ÷ + 90 °C)	
Temperatura di corto circuito:	250 °C	
Marcatura:	BERICA CAVI S.P.A. (VI) FG70H2R + T 0,6/1 kV 0.R.	CEI 20-22 II CE Anno/Lotto - N° Anime x Sezione + T
Raggio di curvatura:	minimo 15 volte diametro esterno	

TECHNICAL FEATURES

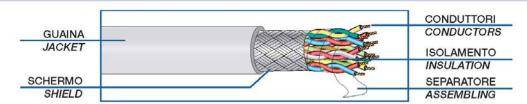
	1.0 8 35 7 7 8 1	
Cores colour code:		UNEL 00722 / VDE 0293 (Tab. 8)
Conductors :	fine wires stranded of bare copper	CEI EN 60228 Cl.5 (Tab.9) rule
Insulation:	G7 quality rubber	CEI 20-11 - CEI EN 50363 rules
Assembling:	polyester-mylar tape	
Shield:	bare copper braid 80% covering	
Outer sheath:	TM2 quality PVC	CEI 20-11 - CEI EN 50363 rules
Sheath colour code:	Grey RAL 7035	
Vertical fire retardant test:	on single conductor or insulated cable	CEI EN 60332-1-2 rule
Emission GAS test:	during the combustion	CEI EN 50267-2-1 rule
Oil resistant test:		CEI 20-34/0-1 rule
Flame retardant test:		CEI 20-22/2 rule
Electric resistance:	according to	CEI EN 60228 (Tab. 9)
Working voltage:	0,6/1 kV	
Testing voltage:	4000 V	
Working temperature:	(-25 °C ÷ +90 °C)	
Short circuit temperature:	250 °C	
Outer printing:	BERICA CAVI S.P.A. (VI) FG70H2R + T 0,6/1 KV O.R. CE	1 20-22 II C€ - Year/Lot - Nr. of cond. by cross sect. + 1
Bending radius:	cable outer diameter x 15	

INDUSTRIA E AUTOMAZIONE

FG70H2R+T 0,6/1 kV A RIDOTTA EMISSIONE DI ALOGENI

FG70H2R+T 0,6/1 kV WITH REDUCED HALOGEN EMISSION

TIPO TYPE	Ø ESTERNO MEDIO MEDIUM Ø OUTER	PESO MEDIO MEDIUM WEIGHT	CODICE PRODOTTO ITEM CODE
n° x mm²	mm	kg x km	
3x1,5 + 1G1,5	10,8	173,0	B5803150
3x2,5 + 1G2,5	12,6	254,0	B5803250
3x4 + 1G4	15,3	365,0	B5803400
3x6 + 1G6	17,4	497,0	B5803600
3x10 + 1G10	20,6	730,0	B58031000
3x16 + 1G16	24,8	1095,0	B58031600
3x25 + 1G25	30,1	1680,0	B58032500
- 24			
	1/4		
	- 14		


	TIPO TYPE	Ø ESTERNO MEDIO MEDIUM	PESO MEDIO MEDIUM	CODICE PRODOTTO ITEM
		Ø OUTER	WEIGHT	CODE
n	° x mm²	mm	kg x km	
		Jan 1965		
			- 100	
			ED AL	
			D-10-0	
		0.00	- 0	
		U.S.	100	
2)32				
1.7%				
1/1				

CAVI TIPO "Li-YCY-P" A COPPIE SCHERMATI A TRECCIA

IMPIEGO: Cavi schermati per segnali e trasmissione dati per applicazioni in elettronica ed informatica, efficaci contro le interferenze elettromagnetiche ed atti ad offrire una protezione contro influenze capacitive dovute a campi elettrici.

CABLES TYPE "Li-YCY-P" TWISTED PAIRS, TINNED COPPER BRAID SHIELD

STANDARD USE: Signal and data transmission shielded cables for electronics and information technology applications, effective against electromagnetic interferences and suited to offer protection against capacitive influences due to electric fields.

CARATTERISTICHE TECNICHE **TECHNICAL FEATURES** CONDUTTORI; CONDUCTORS Flexible bare copper conductors sec. CEI 20-29 (IEC 228) CI. 5, VDE 0295 CI. 5, NF C32-013 CEI 20-29 (IEC 228) CI. 5, VDE 0295 CI. 5, (0,34 mm²: VDE 0295 Cl.2) NF C32-013 Ref. (0,34 mm2 : VDE 0295 Cl.2) ISOLANTE: INSULATION: Polyvinylchloridə (PVC) CEI 20-11 Cl. R2, VDE 0207 Cl. YI2 Rəf. Polivinilaloruro (PVC) Sec. CEI 20-11 Cl. R2, VDE 0207 Cl. YI2 Colour code according to DIN 47100 Codici colori: a norma DIN 47100 SEPARATORE: ASSEMBLING: Nastro di poliestere Polyester tape helically wound SCHERMATURA: A treccia di rame stagnato Tinned copper braid Cordina di continuità a richiesta On request with drain wire **GUAINA ESTERNA:** JACKET Polyvinylchloride (PVC) Polivinilcloruro (PVC) Sec. CEI 20-20 CI. TM2, VDE 0207 CI. YM2 CEI 20-20 Cl. TM2, VDE 0207 Cl. YM2 Ref. colore: grigio (diverso a richiesta) colour: grey or on request RESISTENZA ELETTRICA DEI CONDUTTORI: ELECTRICAL CONDUCTOR RESISTANCE: 0,14 mm²: <148 Ohm/Km 0,14 mm²: <148 Ohm/Km 0,25 mm2: <79 Ohm/Km 0.25 mm2: <79 Ohm/Km 0.34 mm2: <55 Ohm/Km 0.34 mm2: <55 Ohm/Km 0,50 mm²: <39 Ohm/Km 0,75 mm²: <26 Ohm/Km <39 Ohm/Km < 26 Ohm/Km 0.50 mm²: 0.75 mm²: 1mm²: <19,5 Ohm/Km 1 mm2: <19,5 Ohm/Km TEMPERATURA DI ESERCIZIO: WORKING TEMPERATURE: posa fissa: -25°C + 70°C posa mobile: -15°C + 70°C fixed installation: -25°C + 70°C flexing: -15°C + 70°C RAGGIO DI CURVATURA: BENDING RADIUS: 15 volte il diametro del cavo 15 times overall diameter of cable WORKING VOLTAGE: TENSIONE DI ESERCIZIO: 250 V TENSIONE DI PROVA: TEST VOLTAGE: 31

CAVI TIPO "Li-YCY-P" A COPPIE SCHERMATI A TRECCIA

CABLES TYPE "Li-YCY-P" TWISTED PAIRS, TINNED COPPER BRAID SHIELD

PROVA N.P. FIAMMA:

Standard: sec. CEI 20-35 (IEC 332.1) A richiesta: sec. CEI 20-22 II (IEC 332.3A)

FLAME RETARDANT TEST:

Standard: CEI 20-35 (IEC 332.1) Ref. On request: CEI 20-22 II (IEC 332.3A) Ref.

IMPEDENZA DI TRASFERIMENTO:

28.204.1.25.3.000

25x2x0.25

16.4

340.0

max 200 mohm/m (f<10MHz)

SURFACE TRANSFER IMPEDANCE:

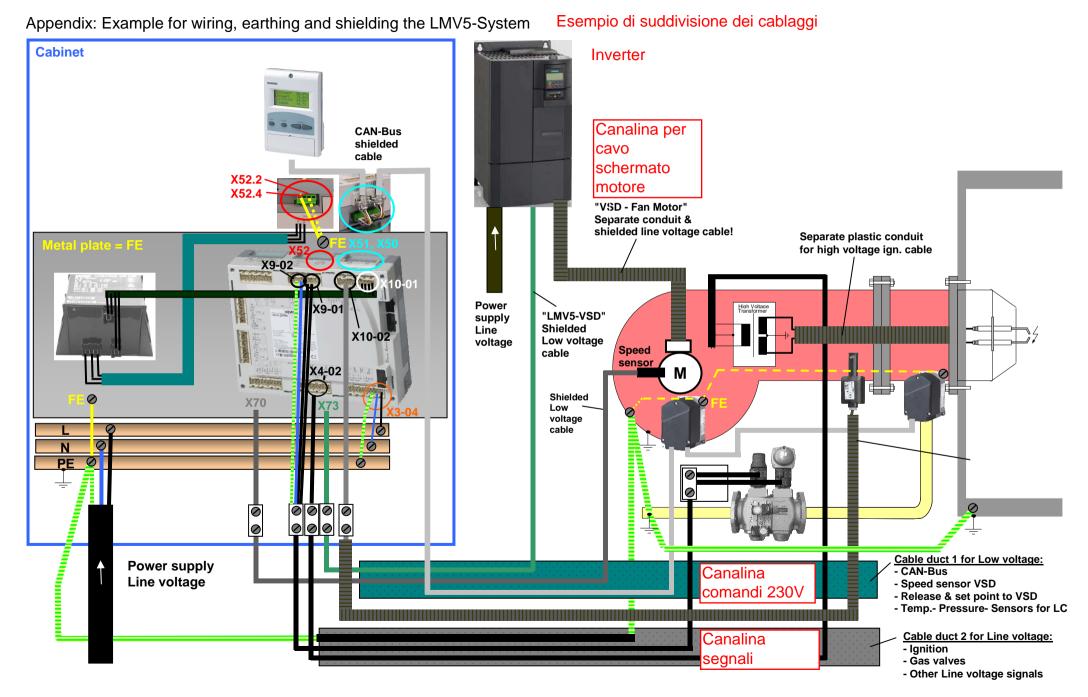
max 200 mohm/m (f<10MHz)

CAPACITA' DI LAVORO:

cond/cond: 120 nF/km (nom.) cond/sch: 180 nF/km (nom.)

CAPACITANCE:

cond/cond: 120 nF/km (nom.) cond/shield: 180 nF/km (nom.)


CODICE	FORMAZIONE	ø esterno medio	Peso medio Kg/Km	CODICE	FORMAZIONE	ø esterno medio	Peso medio Kg/Km
CODE	TYPE	outer diameter ø	Medium weight Kg/Km	CODE	TYPE	outer diameter ø	Medium weight Kg/Km
28.204.1.02.1.000	2x2x0.14	5.6	40.0	28.204.1.02.4.000	2x2x0.34	7.3	68.0
28.204.1.03.1.000	3x2x0.14	5.9	47.0	28.204.1.03.4.000	3x2x0.34	7.8	82.0
28.204.1.04.1.000	4x2x0.14	6.2	61.0	28.204.1.04.4.000	4x2x0.34	8.6	96.0
28.204.1.05.1.000	5x2x0.14	7.2	68.0	28.204.1.05.4.000	5x2x0.34	10.0	110.0
28.204.1.06.1.000	6x2x0.14	7.6	76.0	28.204.1.06.4.000	6x2x0.34	10.6	130.0
28.204.1.07.1.000	7x2x0.14	7.6	82.0	28.204.1.07.4.000	7x2x0.34	10.6	145.0
28.204.1.08.1.000	8x2x0.14	8.4	90.0	28.204.1.08.4.000	8x2x0.34	11.5	150.0
28.204.1.10.1.000	10x2x0.14	9.8	118.0	28.204.1.10.4.000	10x2x0.34	13.0	190.0
28.204.1.12.1.000	12x2x0.14	10.2	130.0	28.204.1.12.4.000	12x2x0.34	13.5	220.0
28.204.1.16.1.000	16x2x0.14	11.2	160.0	28.204.1.16.4.000	16x2x0.34	15.2	250.0
28.204.1.18.1.000	18x2x0.14	11.7	186.0	28.204.1.18.4.000	18x2x0.34	16.0	275.0
28.204.1.20.1.000	20x2x0.14	12.4	200.0	28.204.1.20.4.000	20x2x0.34	17.1	290.0
28.204.1.25.1.000	25x2x0.14	14.0	273.0	28.204.1.25.4.000	25x2x0.34	19.5	400.0
28.204.1.02.3.000	2x2x0.25	5.8	54.0	28.204.1.02.5.000	2x2x0.50	7.6	75.0
28.204.1.03.3.000	3x2x0.25	7.0	65.0	28.204.1.03.5.000	3x2x0.50	9.0	125.0
28.204.1.04.3.000	4x2x0.25	7.3	89.0	28.204.1.04.5.000	4x2x0.50	10.0	140.0
28.204.1.05.3.000	5x2x0.25	8.0	99.0	28.204.1.05.5.000	5x2x0.50	10.8	160.0
28.204.1.06.3.000	6x2x0.25	9.0	114.0	28.204.1.06.5.000	6x2x0.50	11.7	190.0
28.204.1.07.3.000	7x2x0.25	9.0	120.0	28.204.1.07.5.000	7x2x0.50	11.7	220.0
28.204.1.08.3.000	8x2x0.25	9.6	126.0	28.204.1.08.5.000	8x2x0.50	14.0	250.0
28.204.1.10.3.000	10x2x0.25	10.3	160.0	28.204.1.10.5.000	10x2x0.50	15.0	300.0
28.204.1.12.3.000	12x2x0.25	11.4	171.0	28.204.1.12.5.000	12x2x0.50	15.7	345.0
28.204.1.16.3.000	16x2x0.25	13.1	238.0	28.204.1.16.5.000	16x2x0.50	17.6	450.0
28.204.1.18.3.000	18x2x0.25	13.6	248.0				
28.204.1.20.3.000	20x2x0.25	14.2	275.0				

CAVI TIPO "Li-YCY-P" A COPPIE SCHERMATI A TRECCIA

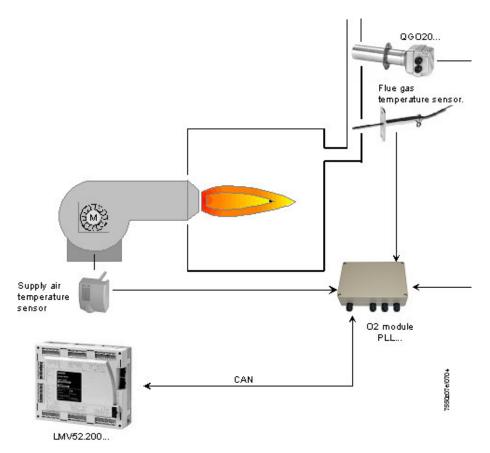
CABLES TYPE "Li-YCY-P" TWISTED PAIRS, TINNED COPPER BRAID SHIELD

CODICE	FORMAZIONE	ø esterno medio	Peso medio Kg/Km	CODICE	FORMAZIONE	ø esterno medio	Peso medio Kg/Km
CODE	TYPE	outer diameter ø	Medium weight Kg/Km	CODE	TYPE	outer diameter ø	Medium weight Kg/Km
28.204.1.02.6.000	2x2x0.75	8.6	103.0	28.204.1.02.7.000	2x2x1	9.4	122.0
28.204.1.03.6.000	3x2x0.75	9.0	128.0	28.204.1.03.7.000	3x2x1	11.5	179.0
28.204.1.04.6.000	4x2x0.75	10.6	167.0	28.204.1.04.7.000	4x2x1	12.8	237.0
28.204.1.05.6.000	5x2x0.75	12.0	215.0	28.204.1.05.7.000	5x2x1	13.8	297.0
28.204.1.06.6.000	6x2x0.75	12.8	240.0				
28.204.1.07.6.000	7x2x0.75	12.8	265.0				
28.204.1.08.6.000	8x2x0.75	14.6	306.0				
28.204.1.10.6.000	10x2x0.75	16.0	355.0				
28.204.1.12.6.000	12x2x0.75	17.0	405.0				
28.204.1.16.6.000	16x2x0.75	20.5	565.0				

SIEMENS

18 Appendice 4: LMV52... con controllo O2 e modulo O2

18.1 Generalità

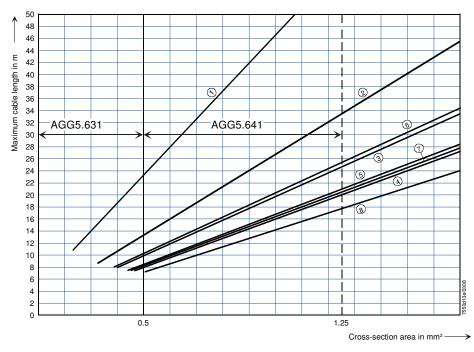

Il sistema LMV52... è un'estensione del sistema LMV51.... Una funzione speciale del sistema LMV52... è il controllo della percentuale di ossigeno nei fumi di scarico al fine di aumentare l'efficienza della caldaia.

Oltre alle caratteristiche dell'LMV51..., il sistema LMV52... fornisce il controllo dell'O2, il controllo di un massimo di 6 attuatori, il controllo del VSD, e la misura del consumi dei combustibili. Il sistema LMV52... utilizza un sensore di O2 (QGO20...), un modulo esterno O2, e le componenti standard del sistema LMV51....

Il modulo PLL... O2 è un modulo di misura indipendente per il sensore QGO20... e per 2 sensori di temperatura (Pt1000 / LG-Ni 1000). Il modulo comunica con l'LMV52... attraverso il CAN bus.

Il contatore di combustibile deve essere collegato direttamente agli ingressi relativi al combustibile dell'unità base. Sul display dell'AZL5... e sull'unità operativa, si possono leggere i singoli valori di consumo ed azzerare le letture del contatore.

ATTENZIONE: per la corretta regolazione del bruciatore, è necessaria l'installazione di un contatore di combustibile, dedicato al singolo bruciatore.


Determinazione della lunghezza massim del cavo

La lunghezza massima del cavo tra il trasformatore e gli utenti del CAN bus dipende dal tipo di cavo (area della sezione), il numero degli attuatori ed il tipo di attuatore utilizzato (corrente).

I grafici che seguono possono essere utilizzati per determinare le lunghezze massime del cavo del CAN bus tra il trasformatore ed il gruppo di attuatori oppure l'AZL5..., a seconda dei relativi fattori influenzanti.

È stata fatta l'ipotesi che gli attuatori del gruppo siano vicini tra loro.

L'area **minima** della sezione per gli esempi del sistema illustrati risulta dall'inizio della curva. Le lunghezze **massime** del cavo per i cavi di sistema definiti AGG5.641 ed AGG5.631 risultano dai punti di intersezione nel grafico.

AGG5.631 (cable type 2) AGG5.641 (cable type 1)

- (1) 1 x SQM45... (5) 2 x SQM48...
- ② 2 x SQM45... ⑥ 1 x SQM45... + 1 x SQM48...
- ③ 3 x SQM45... ⑦ 2 x SQM45... + 1 x SQM48...
- 4 x SQM45... 8 3 x SQM45... + 1 x SQM48...

Connessione del CAN bus tra il trasformatore e il gruppo dell'attuatore

Quando si connette un modulo O2 PLL52..., la lunghezza massima ammissibile del cavo di una rete deve essere ridotta di 2 m.

Esempio: - Cavo di sistema: AGG5.641 (per la connessione del cavo agli attuatori)

- Attuatori: 2 x SQM45...

Il punto di intersezione della linea verticale dell'AGG5.641 (1.25 mm²) e la curva \square (2 x SQM45...) fornisce una lunghezza massima del cavo di 33.4 m tra il trasformatore ed il gruppo di attuatori.

12.1 Alimentazione del sistema LMV5...

In principio, la topologia del CAN bus contiene sempre una struttura di linea e, pertanto, ha un nodo iniziale ed uno finale.

I singoli utenti del CAN bus sono collegati in serie, per cui i rispettivi nodi finali sono terminati da resistenze di terminazione del CAN bus.

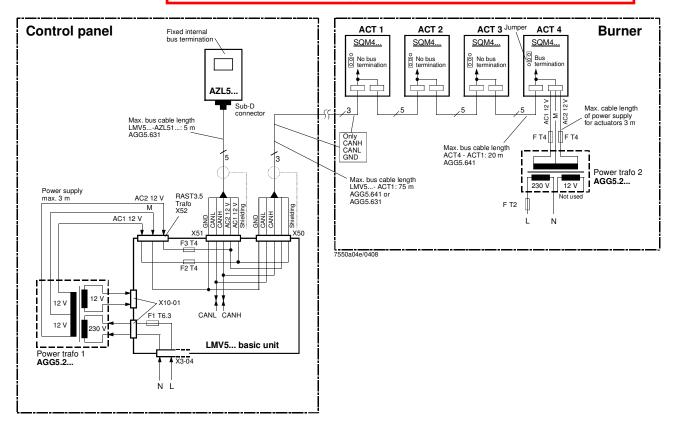
L'unità base è una componente della linea di comunicazione ed è circuitata tra l'AZL5... e gli attuatori.

Nel sistema, l'AZL5... assume sempre la funzione di un nodo finale del CAN bus. La resistenza di terminazione richiesta per il CAN bus è in tal caso già integrata.

Con gli attuatori, l'ultimo utente diventa il nodo finale del CAN bus (qui, la terminazione interna del CAN bus deve essere attivato mediante uno spinotto di connessione "Jumper").

Gli altri utenti del nodo sulla struttura della linea sono configurati senza resistenza di terminazione.

Esempio 1


Installazione di tutti i componenti del bruciatore; cavo del CAN bus «LMV5... ↔ ultimo attuatore» < 20 m

Nota sull'esempio 1

Lunghezza totale del cavo del CAN bus \leq 100 m

Unità base LMV5... sulla centralina di controllo, attuatore sul bruciatore; cavo del CAN bus «LMV5... ↔ ultimo attuatore» > 20 m

Note sull'esempio 2

Lunghezza totale del cavo del CAN bus ≤ 100 m

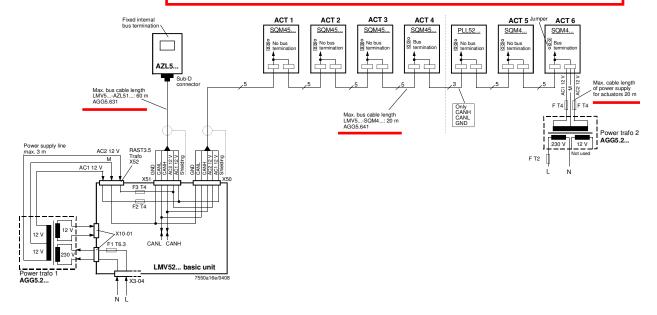
Se la distanza tra l'LMV5... e l'ultimo attuatore è superiore a 20 m, oppure se sul bruciatore è installato più di un attuatore SQM48... (consultare lo schema di dimensionamento «Determinazione della lunghezza massima del cavo»), sarà necessario un secondo trasformatore per l'alimentazione degli attuatori.

In tal caso, il trasformatore 1 fornisce l'alimentazione all'unità base dell'LMV5... e dell'**AZL5...**

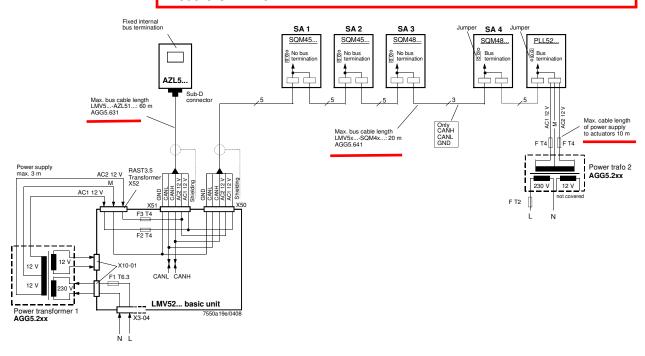
Con le connessioni del cavo del CAN bus dall'LMV5... al primo attuatore, le 2 tensioni AC1 e AC2 dal lato LMV5... **non saranno** collegate e solo i cavi CANH, CANL ed M (+schermatura) verranno collegati al primo attuatore.

In tal caso, gli attuatori sono alimentati da un secondo trasformatore che deve essere posizionato vicino agli attuatori.

L'alimentazione da quel trasformatore (cavi AC1, AC2 e GND) viene fornita all'attuatore (SA4 nell'esempio precedente) e quindi collegata attraverso il cavo del bus AGG5.641 a tutti gli altri attuatori.


I fusibili richiesti per il trasformatore 1 sono posizionati nell'unità base dell'LMV5....

Per il trasformatore 2, questi 3 fusibili devono essere posti vicino al trasformatore.


Esempio 3a

Installazione di tutti i componenti nel bruciatore; Cavo CAN bus «LMV52... ↔ ultimo attuatore» < 20 m con 6 attuatori e modulo O2 PLL52...

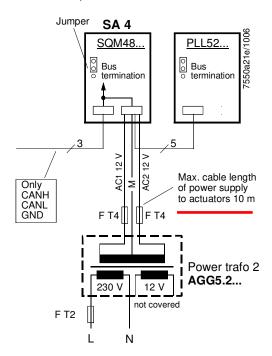
Esempio 3b

Installazione nella centralina di controllo, nel bruciatore e sulla caldaia; cavo del CAN bus «LMV52... ↔ ultimo attuatore» < 25 m con 4 attuatori e modulo O2 PLL52...

Cavo del CAN bus con LMV52... e più di 4 attuatori più modulo O2 PLL52...

Sulle applicazioni LMV52... con più di 4 attuatori (SQM45...), sarà necessario un secondo trasformatore per l'alimentazione degli attuatori aggiuntivi.

In tal caso, il trasformatore 1 alimenta l'unità base LMV52..., l'**AZL5...**, ed i primi 4 attuatori.

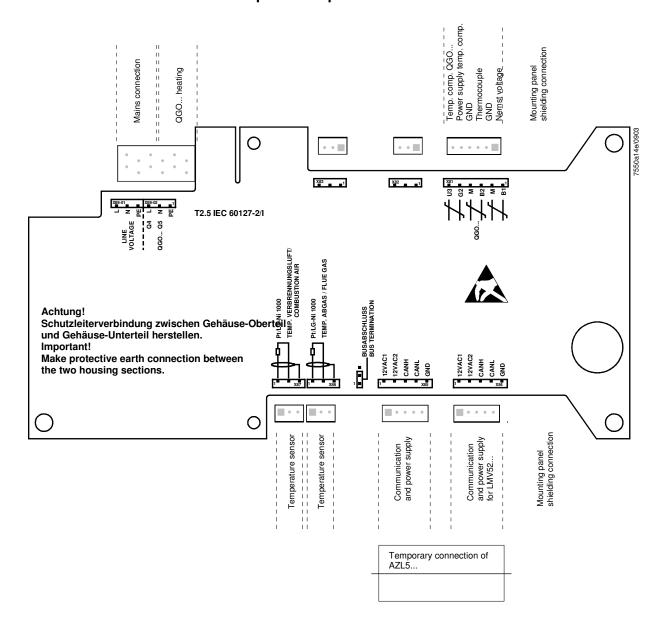

Interrompere la connessione tra le componenti in una posizione opportuna. Sul lato attuatore, le 2 tensioni AC1 ed AC2 **non** devono essere collegate ma solo le linee «CANH, CANL ed M» (+schermatura) al modulo O2 ed all'altro attuatore.

Gli attuatori (SA5, SA6) ed il modulo O2 devono essere alimentati da un secondo trasformatore da posizionare vicino agli attuatori ed al modulo O2.

Collegare la linea di alimentazione proveniente da quel trasformatore al modulo O2 PLL52... (nell'esempio 3a «SA6» / nell'esempio 3b «Auxiliary terminal») (linee AC1, AC2, M) e da qui, attraverso il cavo del AGG5.641, fino al secondo attuatore (SA) ed al modulo O2.

I fusibili necessari per il trasformatore 1 sono posizionati nell'unità base dell'LMV52....

Opzionalmente, la tensione di alimentazione può essere anche trasmessa attraverso una scatola per cavi ed inviata alla linea di connessione tra l'attuatore (SA4) e PLL52...

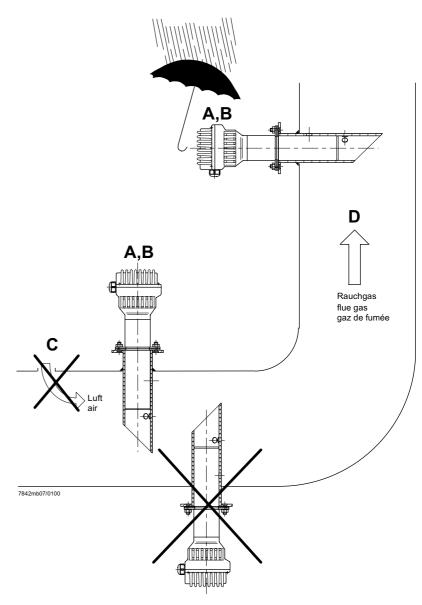


Per il trasformatore 2, l'OEM deve montare i 3 fusibili nelle vicinanze del tranformatore.

18.8 Modulo **O2**

Rispetto al Sistema LMV51, il Sistema LMV52... ha dei componenti aggiuntivi: modulo O2, semsore O2 e sensore di temperature dei gas combusti. Il moodulo O2 si collega con l'unità base attraverso il CAN bus e deve essere posizionato vicino al sensore ossigeno QGO... (< 10 m), al fine di mantenere le interferenze sulle linee sensibili più basse possibili. Per il riscaldamento del sensore, il modulo di O2 richiede il collegamento ad una rete separata.

18.8.1 Inputs e outputs



QGO20...

Montageanleitung Mounting instruction Instruction de montage Monteringsanvisning Montage-aanwijzing Istruzioni di montaggio Asennusohje Instrucciones de montaje Monteringsinstruktion Montasjeanvisning

Fühler aus Keramik - zerbrechlich Ceramic detector - fragile Sonde en céramique - fragile

O2-Fühler QGO20... und Rauchgassammler AGO20...

Voraussetzungen für eine korrekte messtechnische Erfassung des O2-Gehaltes der Rauchgase:

- A QGO20... **nur** mit Rauchgassammler AGO20... einsetzen
- B Einbauort des QGO20... so nahe am Brenner wie möglich, in einem Bereich ohne Turbulenzen und Inhomogenitäten. Nicht direkt im Bereich von Klappen oder Bögen montieren. Idealer Abstand: 5 x Kamindurchmesser.
- C Zwischen Brenner und Fühler darf keine Luft in die Rauchgase gelangen.
- D Strömungsgeschwindigkeit 1...10 m/s. Rauchgastemperatur am Messort ≤ 300°C

O2-detector type QGO20... and flue gas collector type AGO20...

Presupposition for the correct measurement of the O2 content of the flue gases:

- A Use QGO20... **only** with flue gas collector type AGO20...
- B Mounting position of the QGO as close as possible to the burner, in a homogenous area without any turbulences. Do not mount the QGO20... in the area of dampers or curves. Ideal distance: Five times the diameter of the stack.
- C No air must be allowed to join the flue gases on their way from the burner to the detector.
- D Flow velocity 1...10 m/s. Flue gas temperature at the measuring position $\leq 300^{\circ}C$

Sonde O2 QGO20... et collecteur des gaz de fumée AGO20...

Conditions requises pour une détection correcte de la teneur en O2 des gaz de fumée:

- A Utiliser le QGO20... **exclusivement** avec le collecteur des gaz de fumée AGO...
- B Lieu de montage du QGO20... le plus près possible du brûleur, dans un domaine homogène sans turbulences. Ne pas le monter dans le domaine des clapets ou dans les courbes. Distance idéale: Cinq fois le diamètre de la cheminée.
- C Entre le brûleur et la sonde, il ne doit pas pénétrer d'air dans les gaz de fumée.
- D Vitesse d'ecoulement 1...10 m/s. Température des gaz fumée au lieu de la mesure ≤ 300°C

Anschluss-Schema

6-adriges abgeschirmtes Kabel. Adern möglichst paarweise verdrillt. Abschirmung an Klemme GND des RPO... . Abschirmung nicht mit Schutzleiter oder M verbinden!

Anschlusskabel z.B.:

Wiring diagram

Shielded 6-core cable. Wires should be twisted in pairs. Screen must be connected to terminal GND of the RPO... . Do not connect the shielding to the protective earth or M!

Connecting cable e.g.:

Schéma de raccordement

Câble blindé à 6 brins. Brins torsadés si possible par paires. Blindage sur la borne GND du RPO... . Ne pas connecter le blindage avec le conducteur de protection ou MI

Câble de raccordement p.ex.:

LiYCY	6 x 2 x 0,20 / 22 oder 6 x 2 x 0,20	LifYCY LiYCY	6 x 2 x 0,20 / 22 or 6 x 2 x 0,20	LifYCY LiYCY	6 x 2 x 0,20 / 22 ou 6 x 2 x 0,20
B1 (+) M (-)	Signal O2-Messzelle Masse für B1, B2	B1 (+) M (-)	Signal from O2-measuring cell Ground for B1, B2	B1 (+) M (-)	Signal de la cellule de mesure d'O2 Masse pour B1, B2
B2 (+) M (-)	Thermoelement-Spannung	B2 (+) M (-)	Thermocouple voltage	B2 (+) M (-)	Tension de thermocouple
U3 (+)	Signal Temperaturkompensations- element	U3 (+)	Signal from temperatue compensation element	U3 (+)	Signal de l'élément de cpmpensation de température
G2 (-)	Speisung Temperaturkompensations- element	G2 (-)	Power supply for temperature compensation element	G2 (-)	Alimentation de l'élément de compensation de température
GND	Masse für Anschirmung	GND	Ground for screening	GND	Masse du blindage
3 x 1,5 mm	n ² .	3 x 1,5 m	m ² :	3 x 1,5 m	ım²:
Q4	Fühlerheizung (AC 230 V)	Q4	QGO detector heating (AC 230 V)	Q4	Chauffage de sonde QGO (AC 230 V)
Q5	Fühlerheizung (AC 230 V)	Q5	QGO detector heating (AC 230 V)	Q5	Chauffage de sonde QGO (AC 230 V)

Erde*

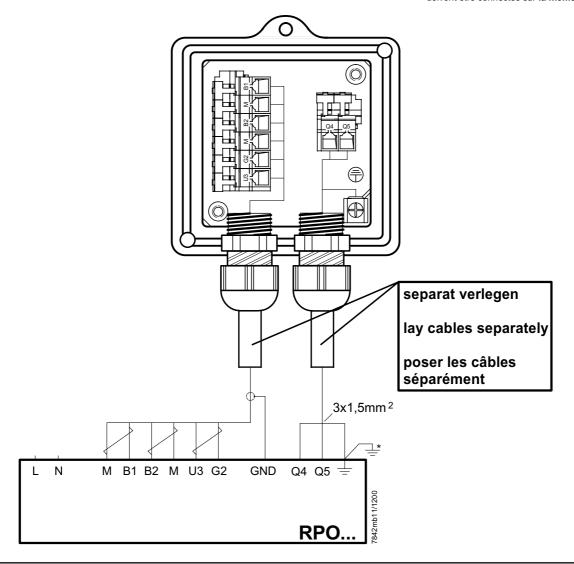
Vorsicht bei den Anschlüssen U3 und G2! Ein Fehlverdrahten der Anschlüsse führt zu einem Ausfall des Kompensationselementes.

* Am RPO... steht nur 1 Erdleiterklemme zur Verfügung. Beide Erdleiter müssen auf eine Klemme geführt werden.

Earth*

Caution when connecting U3 and G2! Faulty wiring leads to failure of the compensation element.

* At the RPO..., there is only 1 earth terminal available. Both earth wires must be connected to **the same** earth terminal.



Prière de faire attention lors des raccordements U3 et G2. Une erreur de câblage des fils de raccordement conduit à une destruction de l'élément de compensation.

* Le RPO... ne dispose que d'une seule borne de mise à la terrre. Les deux fils de mise à la terre doivent être connectés sur **la même** borne.

2/4 4 319 2366 0

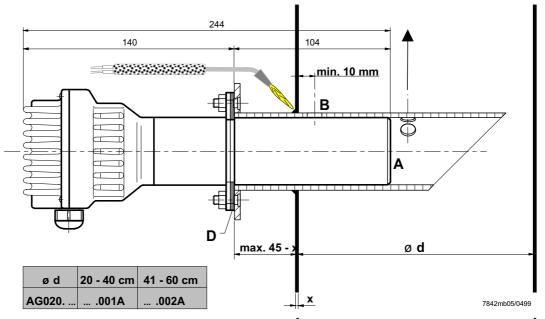
Hinweise für Installation und Inbetriebnahme

- Distanz zwischen Wand des Rauchgaskanals und Rauchgasaustritt (B) des AGO20... min. 10 mm
- Die Kaminisolierung darf nicht über den Anschlussflansch hinausragen und dadurch den Fühlerkopf isolieren (therm. Überlastung).
 Der Fühlerkopf muss frei bleiben!
 Strahlungswärme vermeiden; z.B. durch Wärmeleitbleche
- Bei der ersten Inbetriebnahme ist das Mess-Sytem ca. 2 Stunden vor Gebrauch einzuschalten.
 Bei kurzen Abschaltungen der Anlage (1-2 Wochen) ist es empfehlenswert, das Mess-System (QGO... und RPO) nicht auszuschalten.
- Während des Aufheizvorganges kann der Fühler falsch messen.

- QGO20... nie im kalten Zustand bei laufendem Brenner im Kamin einsetzen.
- Nach Fühlertausch, Ansteuerung der Fühlerheizung überprüfen.
- Spannung an Q4 Q5 muss im 2 s Takt pulsieren.

Commissioning and Installation Guide

- The distance between the wall of the flue gas duct and the flue gas outlet (B) of the AGO20... must be a minimum of 10 mm
- The insulation of the chimney must not project beyond the connecting flange, thus insulating the head of the sensor (thermal overload).
 The head of the sensor must remain uncovered!
 Avoid heat due to radiation, e.g. through thermal conductive plates
- When starting up the plant for the first time, the measuring system should be switched on approx.
 2 hours prior to usage.
 If the plant is switched off for short periods of the time (1 to 2 weeks), it is recommended to leave the measuring system (QGO... and RPO) switched on.
- During the heating up phase, the detector could deliver an incorrect signal.


- Never use a cold QGO20... in the flueway while burner is operating.
- After changing the sensor, check the proper functioning of the sensor's heating element
- Voltage at Q4 Q5 must pulsate at 2-s intervals
- If voltage does not pulsate, <u>switch equipment off</u> <u>immediately</u>
- replace RPO

Instructions de mise en service et installation

- La distance entre la paroi de la conduite de gaz et la sortie des gaz de fumée (B) du AGO20... doit être d'au moins 10 mm.
- L'isolation de la cheminée ne doit pas dépasser la bride de raccordement, c'est-à-dire couvrir la tête de la sonde (surcharge thermique). La tête de la sonde ne doit pas être couverte! Eviter la chaleur de rayonnement, p.ex. par tôles thermoconductrices
- Lors de la première mise en service, le dispositif de mesure doit être raccordé environ 2 heures avant l'utilisation. En case de courtes interruptions de l'installation (1-2 semaines), il est recommandé de ne pas déclencher le dispositif de mesure (QGO... et RPO).
- Pendant l'operation d'échauffement, il est possible que la sonde ne mesure pas correctement.

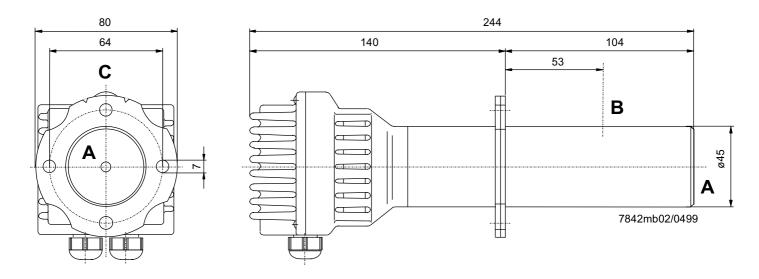
- Ne jamais introduire le QGO20... à l'état froid ou le laisser introduit dans la cheminée quand le brûleur est en marche.
- Lors d'un changement de sonde, verifier le signal de chauffage de celle-ci.
- Les tensions aux bornes Q4 Q5 doivent commuter toutes les 2 s.
- <u>Déconnecter immédiatement</u> en cas de noncommutation des tensions
 - » Echanger le RPO

Legende:

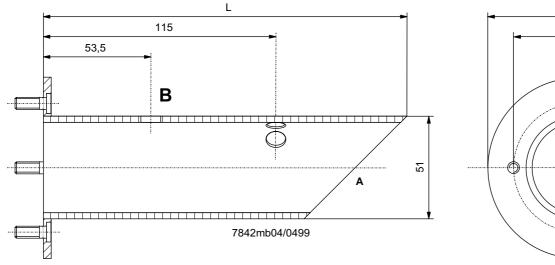
Strömungsrichtung

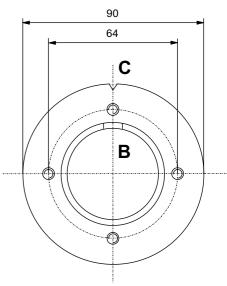
Direction of flow of flue gases

Direction du courant des gaz de fumée


Kerben beachten!
Observe notches!
Attention aux entailles!

7842mb06/0499


4 319 2366 0 3/4


Maßbilder / Dimensions / Encombrements

QGO20...

AGO20...

L = 180 mm für AGO20.001A

L = 260 mm für AGO20.002A

A = Rauchgaseintritt

B = Rauchgasaustritt

C = Kerbe

D = Flachdichtung (beiliegend)

L = 180 mm for AGO20.001A

L = 260 mm for AGO20.002A

A = Flue gas inlet

B = Flue gas outlet

C = Notch

D = Flat seal (enclosed)

L = 180 mm pour AGO20.001A

L = 260 mm pour AGO20.002A

A = Entrée du gaz de fumée

B = Sortie de gaz de fumée

C = Entaille

D = Joint d'étanchéité plat (inclus)

18.13 Scheda Tecnica

Unità base LMV52...

Condizioni ambientali

Consultare il capitolo Scheda Tecnica!

PI	ı	52	

Consultare II capitolo Scheda Techica !			
Tensione di rete «X89-01»	AC 120 V	AC 230 V	
	-15 % / +10 %	-15 % / +10 %	
Classe di sicurezza	I con parti di classe	II	
	secondo la DIN EN 6	60730-1	
Frequenza di rete	50 / 60 Hz ±6 %		
Consumo di potenza	Ca. 4 VA	Ca. 4 VA	
Grado di protezione	IP54, con contenitor	e chiuso	
Trasformatore AGG5.210			
- Lato principale	AC 120 V		
- Lato secondario	AC 12 V (3x)		
Trasformatore AGG5.220			
- Lato principale	AC 230 V		
- Lato secondario	AC 12 V (3x)		
Immo gozzinomo uto	DINI ENI CO 701 0 1		
Immagazzinamento	DIN EN 60 721-3-1		
Condizioni climatiche	Classe 1K3		
Condizioni meccaniche	Classe 1M2		
Intervallo di temperatura	-20+60 ℃		
Umidità	< 95 % r.h.		
Trasporto	DIN EN 60 721-3-2		
Condizioni climatiche	Classe 2K2		
Condizioni meccaniche	Classe 2M2		
Intervallo di temperatura	-30+70 ℃		
Umidità	< 95 % r.h.		

Esercizio

Umidità

Condizioni climatiche

Condizioni meccaniche

Intervallo di temperatura

La condensazione, la formazione di ghiaccio o l'ingresso di acqua non sono consentite !

DIN EN 60 721-3-3

Classe 3K5

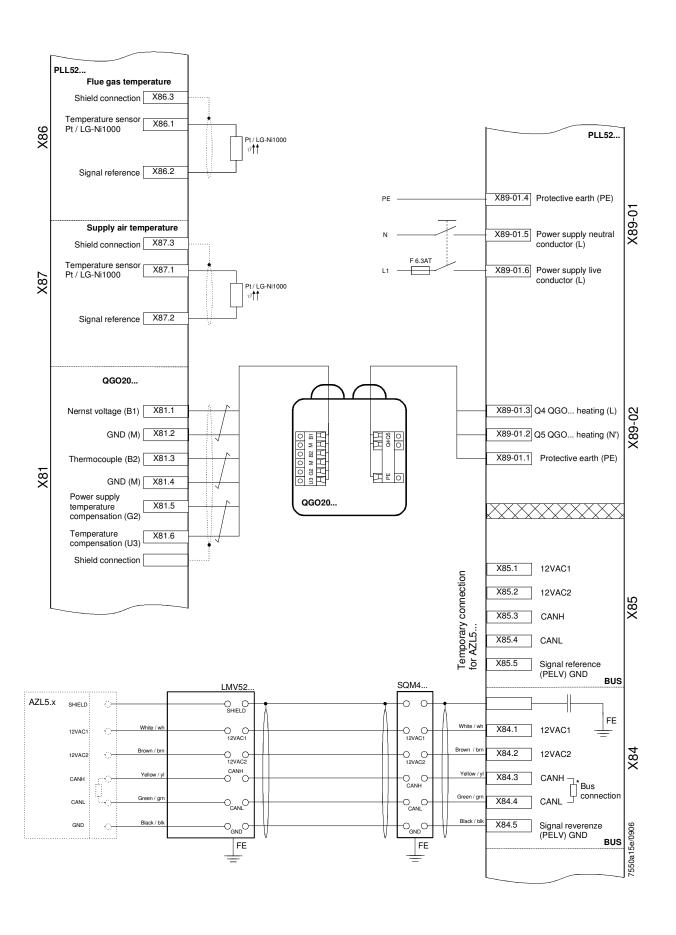
Classe 3M2

-20...+60 °C

< 95 % r.h.

18.14 Valori dei terminali, lunghezze e area della sezione dei cavi

Unità base LMV52...


Consultare il capitolo «Scheda Tecnica / LMV5... ed AZL5...!»

PLL52...

Lunghezze cavi / area della sezione	
Collegamenti elettrici «X89»	Fissare i terminali fino ad un max. 2.5 mm²
Lunghezza del cavo	≤10 m verso il QGO20
Area della sezione	Consultare la descrizione del QGO20
	Doppino telefonico

Ingressi Analogici:

Rivelatore della temperatura dell'aria	Pt1000 / LG-Ni1000
Rivelatore della temperatura del gas	Pt1000 / LG-Ni1000
QGO20	Consultare la Scheda Tecnica N7842
Interfaccia	Bus di comunicazione per LMV52

INVERTER KOSTAL

Collegamento e programmazione per bruciatiori a regolazione elettronica con

LMV2x/3x, LMV5x, ETAMATIC e regolazione INVERTER

Manuale Service ISTRUZIONI TECNICHE

Indice:

Identificazione INVERTER, 3

Comunicazione interfaccia utente (a richiesta), 4

Connessioni elettriche, 5

Varianti di collegamento motore per INVERTER taglia A, B, C, 5

Varianti di collegamento motore per INVERTER taglia D, 6

Collegamento segnali e comandi INVERTER, 7

Collegamenti elettrici e Configurazione parametri, 7

Configurazione ingresso analogico 0-10V / 4-20mA, 8

Configurazione contatto di comando / abilitazione funzionamento start e stop INVERTER, 9

Configurazione parametri start / stop e tipo funzionamento INVERTER, 10

Dati relativi al motore, 11

Variante segnale di uscita per leggere il numero di giri del motore (opzionale), 12

Collegamenti chopper di frenatura, 14

Morsettiera bruciatore con interfaccia INVERTER, 16

INVEOR Mx IVxx PWxx LPxx APxx GHxx DKxx COxx 1
1 2 3 4 5 6 7 8 9 10

	Legenda		Legenda
1	Serie regolatore di velocità: INVEOR	6	Circuito stampato delle applicazioni: AP12 - Standard AP13 - CANopen
2	Luogo di installazione/taglia: integrato sul motore - M, taglia: α, A, B, C, D	7	Comando: DK01 - Standard (senza tastiera a membrana) DK04 - con tastiera a membrana
3	Tensione di ingresso : IV02 - 230 V	8	Involucro : GH10 – dissipatore di calore standard (verniciato nero)
4	Potenza motore raccomandata : kW: 0,55; 0,75; 1,1; 1,5; 2,2; 3,0; 4,0; 5,5; 7,5; 11,0; 15,0; 18,5; 22,0	9	Versione firmware : CO00 - Standard CO01 - specifico
5	Circuiti stampati : LP01 / LP03 – Standard (senza chopper di frenatura); LP02 / LP04 – Standard (con chopper di frenatura);	10	Generazione dispositivo: 1 – versione attuale

L'apparecchiatura **LMV5x**, attraverso un sensore controlla i giri motore ventilatore e con un segnale in **4÷20mA** lo comanda attraverso l'inverter.

L'apparecchiatura **LMV3x/LMV2x** attraverso un sensore controlla i giri motore ventilatore e con un segnale in **0÷10V** lo comanda attraverso l'inverter.

Generalmente la curva dell'inverter va da 50% a 100% dei giri motore. Questo oltre che a migliorare la regolazione del bruciatore permette anche un risparmio sui consumi del motore ventilatore.

COMUNICAZIONE

Interfaccia Utente (a richiesta)

Il regolatore di velocità può essere messo in funzione nei seguenti modi:

Attenzione: Rivolgersi al costruttore per ordinare il dispositivo più idoneo.

Adattatore USB per PC Tramite il software PC INVERTER PC Display remoto INVEOR MMI: INVEROR MMI è un display portatile con il quale si possono visualizzare e modificare tutti i parametri inverter, manuale disponibile sul sito KOSTAL. Collegamento Bluetooh: usando adattatore Bluetooth si può collegare tramite App da qualsiasi dispositivo scaricare App per Android o OS da App Store/Google play... Adattatore BlueToot serve per creare una connessione Bluetoot con inverter, per modificare e visualizzare i parametri Iverter bisogna utilizzare un dispositivo esterno di interfaccia Tablet o Telefono cellulare, scaricare App per Android o OS da App Store/Google play.

CONNESSIONI ELETTRICHE

Varianti di collegamento motore per Inverter taglia A, B, C

Collegamento a stella o a triangolo per regolatore di velocità integrato sul motore

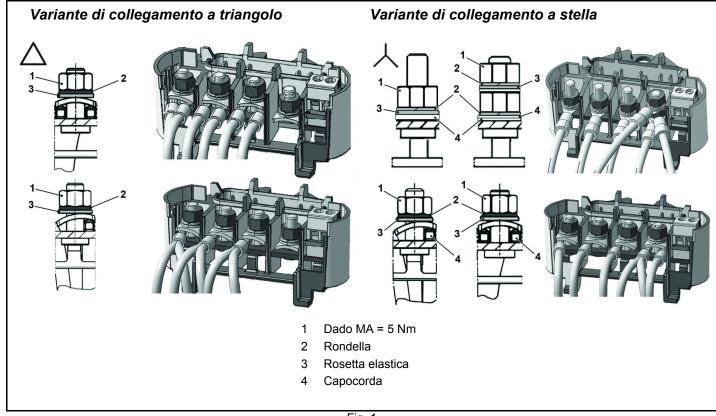
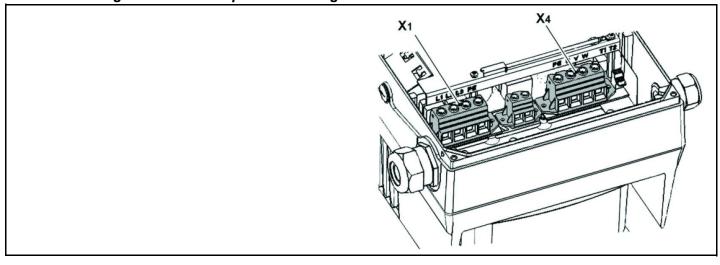
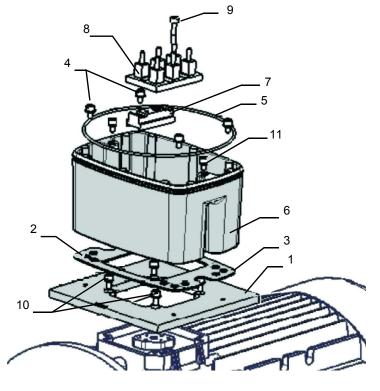



Fig. 1

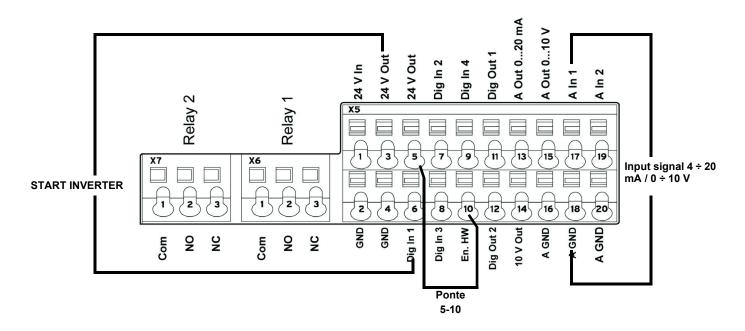
Varianti di collegamento motore per Inverter taglia D


N. morsettiera X1	Denominazione	Assegnazione
1	L1	Fase di rete 1
2	L2	Fase di rete 2
3	L3	Fase di rete 3
4	PE	Conduttore di protezione

Tab. 1 - Assegnazione morsetti X1 - 3 x 400 VAC

N. morsettiera X4	Denominazione	Assegnazione
1	PE	Conduttore di protezione
2	U	Fase di rete 1
3	V	Fase di rete 2
4	W	Fase di rete 3

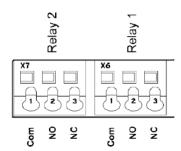
Tab. 2 - Assegnazione morsetti X1 - 3 x 400 VAC


Fig. 2 - Sequenza di assemblaggio: Cassetta di connessione - piastra adattatrice taglia D

Legenda:

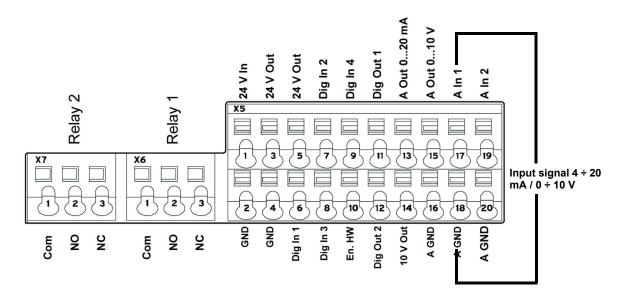
- 1 Opzione piastra adattatrice (variante)
- 2 Fori in corrispondenza del motore
- 3 Guarnizione
- 4 Viti di fissaggio con elementi elastici
- 5 Guarnizione O-ring
- 6 Supporto INVEOR / piastra adattatrice
- 7 Opzione rialzo morsettiera
- 8 Morsettiera originale (non inclusa nella confezione)
- 9 Opzione vite lunga (per pos.7)
- 10 Opzione viti di fissaggio con elementi elastici
- 11 Viti di fissaggio INVEOR/supporto

Collegamento segnali e comandi INVERTER



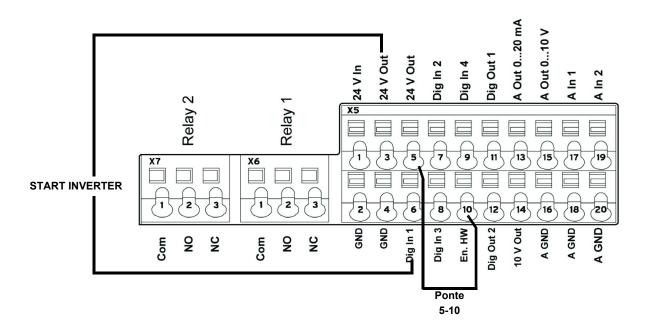
Collegamenti elettrici e Configurazione parametri

Sull' INVERTER sono usati n°2 relè, morsetti X7-1-2-3 e X6-1-2-3 vengono usati per:


LMV2/3x: il relè 1 è usato come contatto di sicurezza sulla serie Safety loop dell'apparecchiatura. Il relè 2 è usato come segnalazione di anomalia sul frontale quadro bruciatore.

LMV5x / ETAMATIC: il relè 1 è usato come contatto di avvenuto comando di partenza motore ventilatore. Il relè 2 è usato come segnalazione di anomalia dell'INVERTER all'apparecchiatura LMV5x / ETAMATIC.

Parame	Parametro		
1.181	Funzione Reset Automatico	Reset automatico delle anomalie L'INVERTER resetta l'anomalia dopo il tempo impostato. Valore impostato = 30 secondi	
1.182	Numero Reset Automatici	Con la Funzione in reset automatico si può limitare il numero massimo di reset automatici. Valore impostato = 0 (numero massimo di reset automatici)	
4.190	Funzioni del relè 1	Selezione del modo di funzionamento del relè 1 Valore impostato = LMV2x/3x= 11 (errore invertito NC) Valore impostato = LMV5x / ETAMATIC = 19 (motore è in funzione NO)	
4.210	Funzioni del relè 2	Selezione del modo di funzionamento del relè 2 Valore impostato = LMV2x/3x= 11 (errore invertito NC) Valore impostato = LMV5x / ETAMATIC = 11 (errore invertito NC)	


Configurazione ingresso analogico 0-10V / 4-20mA

L'ingresso Aln1 può essere configurato come ingresso in tensione o corrente per LMV5-Etamatic viene configurato come ingresso in corrente 4-20mA, per LMV2x/3x come ingresso in tensione 0-10V.

		Definisce il tipo di ingresso se in corrente o in tensione
4.020	Tipo ingresso Al1	1= Ingresso in tensione 0-10V (LMV2x/3x)
		2= Ingresso in corrente 0/4-20mA (LMV5 ETAMATIC)
		Definisce il valore minimo dell'ingresso analogico in percentuale dell'intervallo.
		Esempio:
4.021	Al1 Norm. Minimo	010 V oppure 020 mA = 0 %100 %
		210 V oppure 420 mA = 20 %100 %
		Valore impostato = 20% per LMV2x/3x, LMV5x, ETAMATIC
		Definisce il valore massimo dell'ingresso analogico in percentuale dell'intervallo a 10V
4.022	Al1 massimo	o 20mA
		Valore impostato = 100%
4.023	Al1 tempo di reazione	Definisce la banda morta sul segnale ingresso
		Valore impostato = 1%
	Al1 tempo filtro	Una variazione dell'ingresso viene preso in considerazione dopo questo tempo se
4.024		troppo corto pùo comparire errore rottura filo se segnale 4-20 mA va a 0 per un breve periodo
		Valore impostato = 4 secondi
		Specifica se l'ingresso è 0 = analogico / 1 = ingresso digitale
4.030	Al1 funzione Ingresso	Valore impostato = 0 analogico
4.000	Definisce l'unità di misura dell'ingresso 1	
4.033	Al1 Unità di misura ingresso 1	Valore impostato = 0 (%)
4.034	Al1 Inizio scala	Definisce inizio scala dell'ingresso 1
4.034	ATT ITIIZIO SCAIA	Valore impostato = 0 (%)
4.035	Al1 Fine scala	Definisce inizio scala dell'ingresso 1
4.033	All I lile Scala	Valore impostato = 100 (%)
		Definisce il tempo dopo il quale compare anomalia se ingresso Al1 si interrompe (rot-
4.036	Al1 tempo di rottura filo 5s	tura filo).
		Valore impostato = 5 secondi
4.037 Al1 Inversione Inverte il segnale dell'ingresso 1		
		Valore impostato = 0 (Inattivo)

Configurazione contatto di comando / abilitazione funzionamento start e stop INVERTER

Morsetto	
X5-3 (24V Out) X5-6 (Digit In1)	se porto i 24V al morsetto X5-6 abilito il funzionamento INVERTER e il contatto che lo fa partire/spegnere. Su LMV2/3x X5-3 (24V Out) alimenta anche encoder giri motore.
X5-5 (24V Out) collegato con X5-10 (En.HW)	serve per dare abilitazione alla rampa di frenatura xxxx

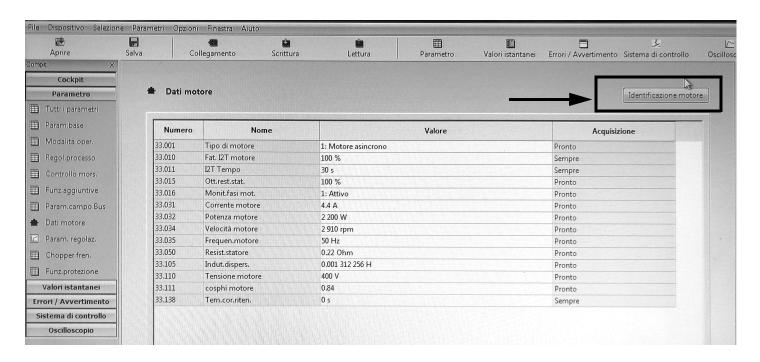
Configurazione parametri start / stop e tipo funzionamento INVERTER

Parame	Parametro		
1.020	Frequenza min. Hz	Frequenza ingresso al minimo in Hz Valore impostato = 0 Hz (LMV2x-3x / LMV5x) Valore impostato = > 35 Hz (ETAMATIC)	
1.021	Frequenza max. Hz	Frequenza ingresso al massimo in Hz Valore impostato = 51,5 Hz (LMV2x-3x / LMV5x) Valore impostato = 50 Hz (ETAMATIC)	
1.050	Rampa 1 Tempo di Frenatura 1	Tempo frenatura allo spegnimento per arrivare alla velocità di 0 Hz dopo che il contatto di start e stop si è aperto (non usato) Valore impostato = 10 secondi	
1.051	Rampa 1 Tempo di Accelerazione 1	Il tempo di accelerazione 1 è il tempo necessario al regolatore di velocità per accelerare da 0 Hz alla frequenza massima (non usato) Valore impostato = 10 secondi	
1.052	Rampa 2 Tempo di Frenatura 2	Tempo frenatura allo spegnimento per arrivare alla velocità di 0 Hz dopo che il contatto di start e stop si è aperto Valore impostato = 10 secondi	
1.053	Rampa 2 Tempo di Accelerazione 2	Il tempo di accelerazione 2 è il tempo necessario al regolatore di velocità per accelerare da 0 Hz alla frequenza massima. Valore impostato = 10 secondi	
1.054	Seleziona Rampa usata	Ingresso digitale 1(dig In1 / X5-6) seleziona la rampa utilizzata Valore impostato = 1 (parametri 1.052 e 1.053)	
1.088	Arresto rapido	non usato ma impostare Valore impostato = 10 secondi	
1.100	Modalità funzione	Modalità di regolazione della frequenza: definisce il tipo di funzionamento dell'INVER- TER, nel nostro caso è sempre regolazione di frequenza (0) Valore impostato = 0	
1.130	Setpoint di riferimento	Determina la sorgente dalla quale leggere il valore di riferimento Nel nostro caso è sempre ingresso analogico Al1 Valore impostato = 1 (ingresso analogico 1)	
1.131	Abilitazione Software	A seconda della modifica effettuata, il motore può avviarsi immediatamente. Selezione della sorgente per l'abilitazione della regolazione. Valore impostato = 0	
1.132	Protezione Start-Up	Selezione del comportamento in risposta all'abilitazione software. Valore impostato = 1 (Avvio soltanto con fronte di salita all'ingresso dell'abilitazione della regolazione)	
1.150	Senso di Rotazione motore	Non cambiare questo parametro, per invertire il senso di rotazione, invertire 2 dei 3 fili del cablaggio INVERTER / MOTORE, così facendo gli INVERTER Valore impostato = 1 soltanto avanti / rotazione oraria (non sono possibili modifiche del senso di rotazione)	

Dati relativi al motore

I dati relativi al motore dipendono dal tipo di motore usato. Fare riferimento ai dati riportati nella targa del motore.

Seguire le seguenti operazioni:


- inserire i dati relativi al motore,
- attivare la funzione di riconoscimento motore,
- se la funzione termina con successo inserire i restanti parametri.

Durante la fase di riconoscimento, INVERTER misura alcuni parametri e modifica alcuni settaggi.

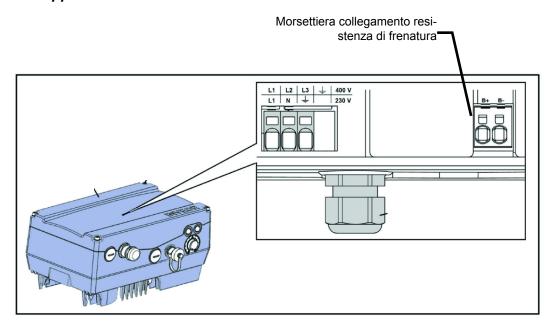
N.B. Ad ogni avvio del programma di riconoscimento, verificare nuovamente tutti i parametri di questo manuale.

Paramet	Parametro		
33.001	Tipo Motore	Selezione del tipo di motore Valore impostato = 1 (Motore asincrono)	
33.010	Fattore I ² t motore	Non usato, solo per encoder Valore impostato = 100%	
33.011	Tempo I ² t	Non usato, solo per encoder Valore impostato = 30 secondi	
33.015	Ottimizzazione R	Se necessario, con questo parametro si può ottimizzare il comportamento di avvio. Non usato Valore impostato = 100%	
33.016	Controllo fasi motore	Il controllo errore "Collegamento motore interrotto" (errore 45) può essere attivato/ disattivato con questo parametro. Valore impostato = 1 (controllo attivo)	
33.031	Corrente motore	Corrente massima motore Valore impostato = valore corrente di targa motore in Ampere	
33.032	Potenza motore Potenza motore all'albero Valore impostato = valore potenza di targa motore in Watt		
33.034	Numero di giri del motore Numero di giri del motore Valore impostato = numero di giri di targa motore in rpm		
33.035	Frequenza motore Frequenza nominale del motore Valore impostato = frequenza di targa del motore in Hz		
33.050	Resistenza Statore Viene riconosciuta da INVERTER Valore impostato = rilevato automaticamente, valore in Ohm		
33.105	Viene riconosciuta da INVERTER Valore impostato = rilevato automaticamente, valore in Henry		
33.110	Tensione nominale del motore		
33.111	Cos phi motore	Dato su targa dati motore Valore impostato = 0,xx	
33.138	Tempo corrente di mantenimento	Serve per fermare il motore!! dopo la frenatura viene mantenuta corrente continua per un certo tempo, assicurarsi che non ci siano surriscaldamenti in questa fase max 5 s suggerito Valore impostato = 0 secondi	

Attivare la funzione di "Identificazione motore" e seguire le istruzioni proposte da INVERTER, successivamente modificare i parametri sottodescritti. L'immagine mostra la schermata del software sul PC.

Parame	tro	
34.010	Tipo di regolazione	Motore asincrono open-loop Valore impostato = 100 (motore asincrono open-loop)
34.020	Ripartenza al volo	Valore impostato = 1 (attivato)
34.021	Tempo ripartenza al volo	Viene calcolato da Inverter Valore impostato = valore calcolato da INVERTER in ms
34.090	Regolazione velocità K _P	Viene calcolato da inverter durante riconoscimento motore, reimpostarlo a 2000 dopo aver fatto riconoscimento motore Valore impostato = 2000 mA/rad/sec
34.091	Regolazione velocità T _N	Viene calcolato da inverter durante riconoscimento motore, reimpostarlo a 7,5 s dopo aver fatto riconoscimento motore Valore impostato = 7,5 sec
34.110	Compensazione scorrimento	Se a 1 è attiva la funzione Se a 0 il motore si comporta come se fosse collegato alla rete. Se la compensazione è attiva, il sistema allinea la frequenza di statore con il rotore, di conseguenza i giri reali del motore aumentano e si portano in linea con i giri teorici di targa dati motore, Il motore viene alimentato con la stessa tensione e frequenza, la corrente però aumenta e i giri si portano ai giri di targa. Valore impostato = 1 (scorrimento compensato)

Variante segnale di uscita per leggere il numero di giri del motore (opzionale)


Per avere un'uscita analogica 4-20 mA che indica il numero di giri del motore ai morsetti: X5-13 (Aout 0-20 mA) e X5-16 (A GND), impostare i parametri sotto indicati:

Parametro			
4.100	Uscita analogica AO1	Selezione opzioni uscita analogica Nel nostro caso per avere un'uscita proporzionale al numero di giri, impostare 19. Valore impostato = 19 (valore effettivo numero di giri)	
Valore minimo uscita analogica esempio: se il motore gira al mass 2900 / 20 x 4 = 580 che è il valore		Segnale in uscita a 0-20 mA Per avere un segnale in 4-20 mA con (4 mA = 0 giri motore) seguire l'esempio: esempio: se il motore gira al massimo a 2900 rpm si calcola: 2900 / 20 x 4 = 580 che è il valore in negativo che corrisponde a 0 mA dai cui partire. Per cui risulterà: 0 mA = - 580,	
		20 mA = 2900 Valore impostato = - xxx (nell'esempio -580)	
4.102	Valore massimo uscita analogica AO1	Valore massimo giri motore per 20 mA Valore impostato = xxxx (nell'esempio sopra 2900)	

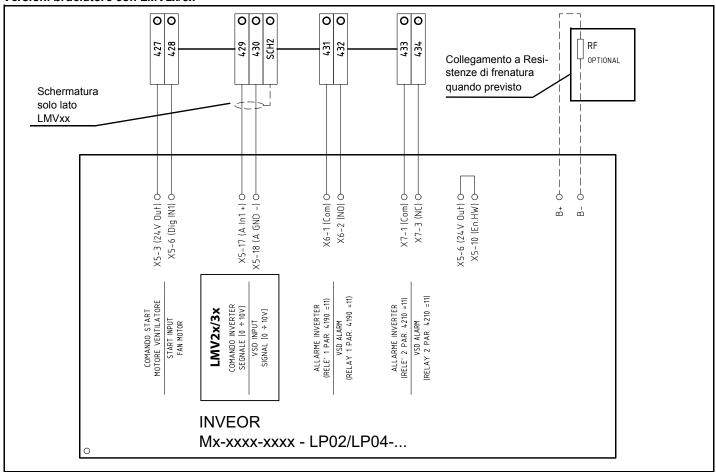
NOTA 1	Se il sistema entra in pendolazione con LMV / ETAMATIC agire sui parametri 34.090 e 34.091 aumentandoli, in particolare sul parametro 34.090 , procedere a step di 100mA/rad/sec.	
NOTA 2	Con LMV 2x/3x con controllo INVERTER, l'apparecchiatura controlla i giri in standby con il param. 653 . Se dopo lo spegnimento del ventilatore, l'apparecchiatura LMV 2x/3x vede che il motore continua a girare, compare errore 83 diagnostica 32 . Questo si verifica se ci sono grandi inerzie della ventola (es. su bruciatori con pale avanti molto pesanti), quindi disattivare sempre il parametro 653 impostandolo a 0 .	
NOTA 3	Con LMV 2x/3x il segnale 0-10V per il comando giri motore durante la standardizzazione si porta a circa 9,7 V e vengono memorizzati i giri del motore ventilatore. Sul manuale LMV è scritto di impostare INVERTER con Hz max = 52,5 Durante la standardizzazione INVERTER viene pilotato a circa 51 ÷ 51,5 Hz e può succedere che si vada fuori assorbimento con il motore. Per tale motivo impostare sull'INVERTER Hz max = 51,5 Durante la standardizzazione INVERTER arriverà a 50Hz e si ridurrà il problema del fuori assorbimento.	
NOTA 4	Sull'INVERTER se viene visualizzato l' <u>errore rottura cavo analogico</u> e il segnale 4-20 mA dell'Inverter continua ad oscillare tra 1 ÷ 6 mA, non sempre vuol dire che l'apparechiatura LMV 2x/3x o ETAMATIC è guasta, potrebbe trat tarsi del firmware vecchio dell'INVERTER e quindi andrebbe aggiornato. Nel caso contattare il Service.	

ERRORI/ PROBLEMI SOLUZIONI		
Parametro 36.020	se compare errore 36	Problemi rilevati alla rete di alimentazione. Impostando questo parametro a 0, l'INVERTER non controlla piu la rete e il messaggio di errore scompare. E' consigliato lasciare il parametro a 1.
Parametro 33.105	se durante il funzionamento la tensione di rete scende	Calando la tensione di rete, l'INVERTER fa diminuisce i giri motore. Per ridurre questa variazione impostare il parametro a 0, così si dovrebbe risolvere il problema.

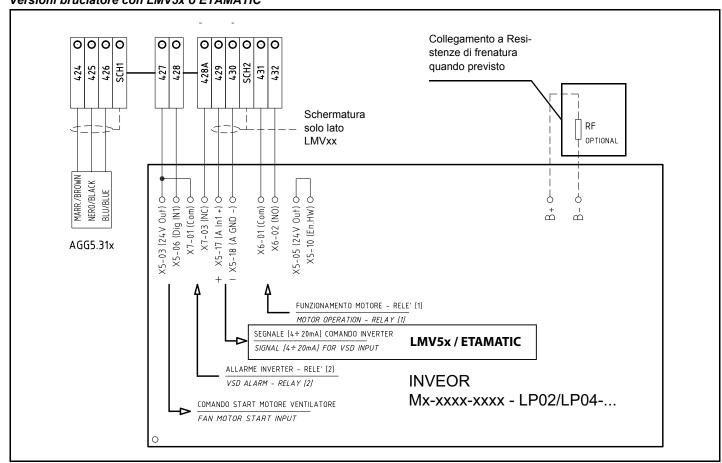
Collegamenti chopper di frenatura

Collegamenti chopper di frenatura

N. morsettiera	Denominazione	Assegnazione
1	B+	Collegamento resistenza di frenatura (+)
2	B-	Collegamento resistenza di frenatura (-)


Assegnazione opzionale chopper di frenatura

Parametro	
Resistenza di frenatura	Attivo o Non attivo



Morsettiera bruciatore con interfaccia INVERTER

Versioni bruciatore con LMV2x/3x

Versioni bruciatore con LMV5x o ETAMATIC

C.I.B. UNIGAS S.p.A. Via L.Galvani, 9 - 35011 Campodarsego (PD) - ITALY Tel. +39 049 9200944 - Fax +39 049 9200945/9201269 web site: www.cibunigas.it - e-mail: cibunigas@cibunigas.it